
A PATTERN FOR INTERCONNECTING DISTRIBUTED
COMPONENTS

Walid Gaaloul1, Karim Baı̈na1,2, Khalid Benali1, and Claude Godart1
1 LORIA - INRIA - CNRS (UMR 7503)

BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France
2 School of Computer Science and Engineering,

The University of New South Wales, Sydney NSW 2052, Australia

Keywords: Object Orientation in Internet and Distributed Computing, Internet and Collaborative Computing, Process De-
sign and Organisational Issues, Enterprise-based Component Architectures, Architectural Patterns for Object-
based Components and Applications, Distributed Component Cooperation.

Abstract: Nowadays, enterprises express huge needs for mechanisms allowing interconnection of their business compo-
nents. Due to the weakness of component integration facilities, a large amount of research and development
has been made in this area. Nevertheless, developed mechanisms are generally hard-coded, proprietary and
lack a high level of abstraction. This paper presents our contribution to the design, the implementation, and
the experimentation of an architectural pattern named “Service”. This pattern is able to support intercon-
nection and cooperation between distributed components independently of their specific contexts (workflow
processes, database robots, agents, networks nodes, etc.). Our “Service” pattern proposes a generic solution to
interconnection and cooperation between components through object oriented structures and scenarios. The
essence of the pattern is the ability for ”Service” to provide registration, discovery, negotiation and dynamic
API information on behalf of a contained service. Moreover, several alternatives are presented to implement
our pattern.

1 PROBLEMATIC

Applications manipulate considerable number of dis-
tinct and heterogeneous components. By components
we mean all resources needing to be discovered on
a network, and to be used through customised ac-
cess rights (e.g. workflow processes, database robots,
agents, distributed objects, networks nodes, etc.).
These components are often used to cooperate with
each other to achieve common goals of the composed
applications.

Through our pattern “Service”, we bring a generic
solution to the problem of components interconnec-
tion and cooperation. We express the genericity un-
derlying the concepts of components interconnection
and cooperation which are distinct and heterogeneous
as an architectural pattern we name “Service”. This
pattern will express a structural schema for coop-
eration of heterogeneous components which enables
reusability of design and architecture concepts.

2 SERVICE PATTERN :
STRUCTURE

Our contribution is in the same vain of research works
on interconnection and cooperation patterns (Pyarali
et al., 2000; Benatallah et al., 2003; Arsanjani, 1999).
It is specified through the description of its struc-
ture elements, their responsibilities and their manner
to collaborate in the same pattern building structure
(Buschmann et al., 1995; Schmidt et al., 2000). ”Ser-
vice” pattern can be used when there is a need of
cooperation within an environment of heterogeneous
and monolithic components.

”Service” pattern provides a conceptual schema for
distributed component to suit needs for dynamic co-
operation. It helps to decompose a cooperative sys-
tem to software bricks that deal with organisational
and structural aspects such as component presenta-
tion, and with behavioral aspects such as component
access rights, component security, etc.

Our pattern “Service” is composed of two struc-
tures :

1. a service definition structure which enables to de-

430
Gaaloul W., Baïna K., Benali K. and Godart C. (2004).
A PATTERN FOR INTERCONNECTING DISTRIBUTED COMPONENTS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 430-434
DOI: 10.5220/0002643404300434
Copyright c© SciTePress



fine, customize the access to components, and man-
age numerous existing components ;

2. a service discovery and negotiation structure which
enables to support operations of either component
lookup according to structured properties, or dy-
namic customisation of component properties and
access rights.

2.1 Service definition

UML class diagram of figure 1 represents the role
played by a service to abstract and to adapt a com-
ponent subject in order to customize the access to its
resources. Thus, a “Service” is seen as a software en-
tity that encapsulates a component to keep only visi-
ble the elements necessary to its interconnection and
cooperation with other application components.

Subject

• Defines an object interface, which is specific to a
particular component.

Service

• Manages meta-information that keep possible dis-
covery, negotiation and access control to a compo-
nent;

• Dynamically controls the access to the component
it encapsulates;

• Has the capability to dynamically extract the API
of its component, in order to ensure the control
of a component method invocation or a component
event notification;

• Provides a new interface of the component it
adapts: (e.g., complementary functionalities re-
lated to negotiation and discovery);

• Is able to dynamically extract the adapted compo-
nent category and properties attributes in order to
build a profile enabling service discovery and com-
parison to other adapted components;

Category

• Enables components “Subject” to be categorised
thanks to application specific taxonomy (e.g., ob-
ject taxonomy, XML hierarchical taxonomy, etc.).

Profile

• Describes meta-information related to the com-
ponent “Subject” as an application specific set of
named-value attributes properties.

APIManager

• Stores information on the component “Subject” in
terms of methods “Method” and events ”Event”;

• Enables the access control to the previously nego-
tiated interface of the component “Subject”;

• Method and Event enable the component data, status,
and resources management through its primitives
invocation and events notification.

ServiceContainer

• Defines a repository of “Service” objects that is nec-
essary to their discovery, negotiation and access;

• Enables global processing to be applied to services
of the same category (e.g., mining, verification,
transformation, etc.);

• Gathers a view of “Service” objects according to
particular criteria.

ConcreteServiceContainer

• Defines a concrete “ServiceContainer” repository
(e.g., RequestedServiceContainer : gathering requested
services, ProvidedServiceContainer : gathering pro-
vided services, WrappedServiceContainer : gathering
already negotiated and bound services).

2.2 Service discovery and
negotiation

UML class diagram of figure 2 isolates operations re-
lated to components discovery (e.g., matching calcu-
lus between components and component neighbour-
hood calculus), and operations related to components
negotiation. These operations are dynamic and effi-
cient cooperation tools. On one hand, service defi-
nition and discovery aim to structure component ser-
vice containers and ”position” them relatively to each
other. On the other hand, service negotiation enables
to distinguish between discovered components and to
select those that propose most interesting cooperation
contract comparing to other neighbour components.

2.2.1 Service discovery

Locator

• Manages the localisation of the objects “Service”;

• Enables to discover realisations of the object “Sub-
ject” according to a given “LocationStrategy”;

• Depends on the object “Matcher” that ensures the
matching calculus necessary to every service local-
isation.

A PATTERN FOR INTERCONNECTING DISTRIBUTED COMPONENTS

431



Figure 1: Service definition structure

LocationStrategy

• Dynamically manages service discovery algo-
rithms classes (according to methods, events, pro-
file, category, etc.);

• Declares a common interface to every service dis-
covery algorithm;

• Enables discovery algorithms to be independent
and interchangeable by choosing dynamically
an algorithms implemented in one of “Concrete-
LocationStrategies”;

Matcher

• Manages the matching calculus for the objects “Ser-
vice” ;

• Is composed of strategies “MatchingStrategy” for
matching calculus of objects “Service”.

MatchingStrategy

• Declares a common interface to every service
matching calculus algorithm;

• Enables the management of service matching cal-
culus algorithms and their refinement;

• Enables service matching calculus algorithms to be
chosen at runtime from one of “ConcreteMatching-
Strategies”;

2.2.2 Service negotiation

Negotiator

• Manages the negotiation of “Service” objects ac-
cording to a given ”NegotiationStrategy”;

• Enables negotiation of interface access of the ob-
ject “Subject”;

• Knows the set of negotiations concerning the object
“Service”;

• Enables the application of global processing to ne-
gotiations of the same type (e.g., analyse, tactical
application, coordination, etc.);

NegotiationStrategy

• Declares a common interface to every service ne-
gotiation algorithm;

• Enables service negotiation algorithm to be cho-
sen at runtime from one of “ConcreteNegotiation-
Strategies”;

3 IMPLEMENTATION ISSUES
AND SERVICE APPLICATION
EXPERIMENTS

3.1 Implementation issues

Among numerous possible solutions for implement-
ing the facilities of “Service” pattern, we summarise
some of them in table 1.

3.2 Service pattern applied to
Internet printers

As an example of known service pattern use, we will
detail Internet printing service through IPP (Internet
Printing Protocol) . As described by the RFC (IETF,
2000a), Internet printing service possesses the follow-
ing properties :

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

432



Table 1: Service pattern implementation technologies
Facility Solution 1 Solution 2 Solution 3 Solution 4 Solution 5
Services CORBA CCM Web

Servants Components Services
Containers CORBA Trading WebDAV Name RDF UDDI

Service Spaces Containers Repository
Profiles CORBA Trading WebDAV RDF XML

Service Properties Properties Properties Files
Methods IDL CIDL WSDL

Interface Interface Interface
Events CORBA Event CCM Message Oriented

Service Events Middleware (MOM)
Interface CORBA Security ad-hoc facilities
visibility Service

CORBA Trading WebDAV RDF-enabled
Discovery Services or CORBA Searching and search UDDI

Naming Service Locating (DASL) engine
Negotiation OMG Negotiation Facility, Trading Partner Agreement (TPA)

or ad-hoc facilities

Figure 2: Service discovery and negotiation structure

• A profile : (printer-name, printer-uri-supported,
printer-location, printer-state, color-supported, multiple-

document-jobs-supported, document-format-supported,
printer-resolution, etc.) (IETF, 2000b);

• Operations : (Print-Job, Get-Jobs, Pause-Printer,
Purge-Jobs, Get-Printer-Attributes, etc.) (IETF,
2000b);

• Events : (printer-is-accepting-jobs, job-impression-

completed, job-state, etc.);

• Requirements for discovery mechanisms within a
networks of printers : according to printer-name, or
according references stored in printer-urisupported at-
tribute which represent the set of all supported URI
identifier by the printer, or according to information
stored in printer-location attribute which is a char-

acter string of 127 bytes describing the printer lo-
cation in natural language -e.g., “Room 123A, 1st

floor, building A”-), or according to values of other
attributes (IETF, 2000b);

• Requirements for negotiation mechanisms of either
printer supported content format or other printer at-
tributes values (IETF, 2000b; IETF, 2001);

• And requirements for printer access privileges and
roles mechanisms : printing, jobs management, su-
pervision, etc. (IETF, 2000b).

A PATTERN FOR INTERCONNECTING DISTRIBUTED COMPONENTS

433



REFERENCES

Arsanjani, A. (1999). Service Provider: A Domain Pattern
and its Business Framework Implementation. In Pat-
tern Languages of Programs (PLoP’99).

Benatallah, B., Dumas, M., Fauvet, M.-C., and Rabhi,
F. A. (2003). Patterns and Skeletons for Parallel and
Distributed Computing, chapter Towards Patterns of
Web Services Composition, pages 265–296. Springer-
Verlag.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. (1995). Pattern-Oriented Software Ar-
chitecture, Volume 1: A System of Patterns. Wiley,
John and Sons.

IETF (2000a). Internet Printing Protocol - IPP/1.1: Model
and Semantics. IETF (Internet Enegineering Task
Force), www.ietf.org/rfc/rfc2911.txt.

IETF (2000b). Internet Printing Protocol (IPP) : Require-
ments for Job, Printer, and Device Administrative Op-
erations. IETF (Internet Enegineering Task Force),
www.ietf.org/rfc/rfc3239.txt.

IETF (2001). Internet Printing Protocol (IPP) : The
’indp’ Delivery Method for Event Notifications and
Protocol/1.0, draft. IETF (Internet Enegineering
Task Force), www.ietf.org/internet-drafts/draft-ietf-
ipp-indp-method-06.txt.

Pyarali, I., O’Ryan, C., and Schmidt, D. (2000). Patterns
for efficient, predictable, scalable, and flexible dis-
patching components. In Proceedings of 7th Pattern
Languages of Programs Conference (PLoP’00), Mon-
ticello, Illinois, USA.

Schmidt, D., Stal, M., Rohnert, H., and Buschmann, F.
(2000). Pattern-Oriented Distributed System Archi-
tectures, 1st edition. John Wiley & Sons.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

434


