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Abstract: We discuss the design and the implementation of a flexible and scalable fuzzy case-based matching engine. 
The engine’s flexible design is illustrated for two of its core components: the internal representation of cases 
by means of a variety of crisp and fuzzy data types, and the fuzzy operations to execute the ensuing case 
matching process. We investigate the scalability of the matching engine by a series of benchmark tests of 
increasing complexity, and find that the matching engine can manage an increasingly heavy load. This 
indicates that the engine can be used for demanding matching processes. We conclude by pointing at several 
applications in experimental electronic markets for which the matching engine currently is being put to use, 
and indicate avenues for future research.  

1 INTRODUCTION 

Case-based reasoning (CBR) is a problem solving 
approach resembling an example-based search 
process. Problems that have been encountered earlier 
are stored as examples, and when confronted with a 
new problem, similar problems from this set are 
identified by means of a search process. The query 
(or target) problem is then classified according to the 
similarity of earlier examples that have been 
identified (Kolodner, 1993). More formally, CBR 
can be defined as a four-step process (Aamodt and 
Plaza, 1994):  
• Retrieve: Given a target problem, relevant 

stored cases are retrieved. A case consists of a 
problem, its solution, and, typically, annotations 
about how the solution was derived.  

• Re-use: Map the solution from the previous case 
to the target problem. This may involve 
adapting the solution as needed to fit the new 
situation.  

• Revise: Having mapped the previous solution to 
the target situation, test the new solution in the 

real world (or a simulation) and, if necessary, 
revise.  

• Retain: After the solution has been successfully 
adapted to the target problem, store the resulting 
experience as a new case in memory.  

 
 The CBR process in general and the retrieval phase 
in particular are the focus of the matching engine we 
describe in this paper. The general design principles 
that have guided the development of the matching 
engine are presented in the following section, as well 
as the case matching pipeline we have constructed. 
Section 3 focuses on the internal workings of the 
matching process, for which various operators 
derived from fuzzy set theory are used. Section 4 
investigates the scalability of the fuzzy matching 
engine, by varying the case complexity and the 
number of cases. We conclude in Section 5 by 
presenting relevant enterprise matching applications 
and indicating future research opportunities and 
challenges.  
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2 DESIGN OF THE MATCHING 
ENGINE  

While our focus in this paper is on case-based 
reasoning problem solving, it must be noted that it 
was our overall design goal to develop a generic 
framework for reasoning about data, and to allow 
extensions of our framework towards other AI 
technologies, such as clustering, re-inforcement 
learning, neural networks and expert systems (Pal et 
al., 2001).  

2.1 Design layers overview 

2.1.1 Algorithm Layer 

This layer is concerned with the actual 
implementation of the matching algorithms. 
Moreover, Layer 1 controls the scalability of the 
engine, e.g. by  running certain matching algorithms 
in parallel. To the end user, the Algorithm Layer is 
the most abstract layer: there is no graphical user 
interface (GUI) to directly interact with this layer. 
The functionality of this layer is, in short, restricted 
to matching one data set to another. This layer does 
not ‘know’ where the data sets come from, or where 
they will be further processed. This is taken care of 
by the second layer, the Management Layer.  

2.1.2 Management Layer 

The Management Layer is an intermediate layer 
between the Algorithm Layer and the Application 
Layer and makes abstraction of the communication 
between these two layers. This layer provides 
management functionality to the matching engine, 
for example  security, data import from files, data 
bases or data stores, user management, etc. This 
layer must enable those users who have no specific 
technical knowledge about the matching algorithms 
or the structure of the datasets to work with the 
matching engine.  

2.1.3 Application Layer 

The Application Layer, is the front end of the 
software engine application. Layer 3 contains the 
software which actually makes use of the matching 
engine, and can add its own functionality to the 
application. Dedicated GUIs can be developed and 
other applications can be integrated within this layer. 
Other applications such as search engines, web 
services or autonomous agents can make use of the 
data that have been matched.    

2.2 The matching engine pipeline 

The flow of the fuzzy matching engine as shown in 
Figure 2 below can in essence be viewed as a 
traditional input - output process, where the input 
consists of  one or more cases (the actual query), the 
process is the fuzzy matching process, and the 
output consists of the cases that have been matched 
(the actions). This process is iterative: the output of 
the process can be fed back into the engine, and re-
used for a subsequent or new matching query.  
 

The different steps in the ‘pipeline’ of Figure 2 are 
elaborated below. In principle, every step should be 
individually configurable (at startup time and run 
time), and controlled by a “step manager”. We are 
currently exploring the development of a separate 
workflow engine which controls each step of the 
process and also indicates which loop-backs should 
be performed. 

2.2.1 Cases 

Cases are the start of the process and are typically  
created in Layer 2, the Management Layer. A case is 
defined as a set of different properties, with every 
property describing a single attribute on which a 
matching is requested. Any property can have one of 
the following formats: Boolean, Ordinal 
(qualitative), Numeric (quantitative), Alpha numeric, 
Fuzzy (vague) or Unknown. These properties are 
extensible, as we do not know beforehand which 
other data types may be needed. We only know that 
they are atomic and that they form the basis upon 
which will be matched. Properties also have meta-
information. They can have a weight to describe the 
importance of an individual property, a ranking  
relative to other properties and a veto power on other 
properties that are not compatible. Some properties 
can be converted into another format. For example, a 
Numeric property is a special case of a Fuzzy 
property, and hence could be converted into a Fuzzy 
one without loss of precision or information. Cases 
are stored in memory, which can be persistent or 
transient.  
  

Figure 1: The matching engine pipeline 
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2.2.2 Pre-processing 

The pre-processing step occurs before the actual 
matching. While this step is not part of the actual 
matching algorithm, it is, globally speaking, part of 
the matching process. This step is not intended to 
create cases or do property extraction from some 
source, but rather to do some manipulation on the 
properties of a case.  The pre-processing is a queue 
of zero, one or more pre-processing steps, but each 
step is independent of the other. As such, they run 
sequentially in a well defined order. The pre-
processing is not required; actually, a valid 
implementation is one that simply let pass all cases 
without modifying them. 

2.2.3 Matching 

The matching step is the heart of the workflow. Here 
we select the algorithm to match cases against 
others. The actual implementation can differ, and 
one could choose for a simple sorting of cases or 
instead perform complex clustering algorithms. For 
our purposes, there are some requirements upon the 
matching step. We must be able to handle unknown 
and incomplete data, or more specifically, we must 
be able to handle cases where some or more 
properties are absent, unknown or invalid. As a 
result of the matching step, we obtain a result or 
conclusion. This result can be partially complete, but 
it always has received a score which indicates how 
well the case matches with other cases. 

2.2.4 Post-processing 

The post-processing step acts on the result of the 
matching step and is optional, as was the pre-
processing step. In this step, for instance, we could 
decide to store intermediate results. 

2.2.5 Selection of actions and matching 
loops 

In principle, the workflow process could run in an 
endless loop: the result of the matching step can be 
fed again into the initial ‘cases’ step. However, an 
action is associated with the conclusion of every 
single loop. This allows us to act upon partial results 
that have been obtained during the matching or 
reasoning. The main reason for having a loop is to 
make the matching process more powerful. The 
algorithm of the matching can be selected before we 
perform the loop. In a first loop, we could match the 
cases with one particular algorithm and perform a 
second loop with another algorithm. This can be 
repeated until we are satisfied with the result or with 
a pre-defined number of times. The result is a 

matching flow which consists of several smaller 
matching loops, running  in parallel or sequential. 

3  FUZZY MATCHING PROCESS 

3.1 Introduction  

The fuzzy case-based matching engine is capable of 
comparing the properties of a set of cases and 
produces a matching result indicating the degree to 
which every two cases match. As mentioned earlier,  
a case is any uniquely identifiable entity (a product 
description, a buyer preference, a CV,…) containing 
property values for certain criteria. For example, 
criteria may be “color” and “price” and their 
corresponding property values might be “red” and 
“100$”, respectively.   
 

 

In the remainder of this section, we describe the 
internal workings of the engine in more detail. 

Figure 2: The fuzzy matching engine’s internal 
functionality 
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3.2 Input and internal data type 
representation  

Internally, the fuzzy engine performs its operations 
using fuzzy data types. The property values of the 
input cases may be defined in both a crisp (e.g. a 
number or a range) or fuzzy (based on a membership 
function) data type. Table 1 summarizes the 
different data types that can be used in the fuzzy 
engine.   

 
Table 1: Matching engine data types 

Numerical A (crisp) number which can be 
represented with double 
precision 

Discrete set A finite list of options. An option 
can be any uniquely identifiable 
object. An example of a discrete 
set would be {“red”, “blue”, 
“orange”}. 

Weighted 
Discrete Set 

Identical to a standard discrete 
set, however every set member 
has an associated weight or 
membership value (in the 
interval [0,1]). This allows an 
application to use fuzzy 
modifiers for each et member, 
each mapping to a certain 
weight. For instance: 25%=“a 
little”;50%=”somewhat”; 
75%=”quite”,… 

Range A single continuous numerical 
range. 

Range Set A unique set of ranges 
Weighted 
Range Set 

A range set, with weights 
associated to every range. This is 
a generalization of a weighted 
discrete set. 

Fuzzy Set A fuzzy value, represented by a 
function.  

Case Properties may be compound. 
For example a property “price” 
may be a composition (linear 
function) of “base price”, “VAT” 
and “s&h”. These compound 
properties are modeled as sub-
cases containing properties for 
the sub-criteria.  

 
Before comparing property values, the engine 
converts any non-fuzzy property value into a fuzzy 
value at the pre-processing phase. The matching 
engine works with both point-functions and piece-
wise linear functions as membership functions for 
fuzzy values. These can represent all the most 

frequently used fuzzy set membership functions 
(triangular, trapezoid…) and allow an approximation 
of others, such as Gauss curves (De Baets et al., 
1989; Klir and Bo, 1995). 
In order to match the properties of two distinct 
cases, three standard operations need to be 
performed: the fuzzification of the property values, 
the aggregation of these fuzzy values, and the 
defuzzification of the aggregation into a crisp 
matching value, respectively (Xu et al., 2001). We 
discuss each of these steps in the following sections 
in some more detail. 

3.3 Fuzzification 

In order to convert crisp input values into fuzzy 
values, a method of fuzzification needs to be 
selected. A wide variety of  fuzzification methods 
exists, and the most suitable method for the case at 
hand will depend on the usage context. Three 
standard methods have been implemented in the 
engine. In addition, specific fuzzification operations 
can be performed in higher level applications, 
simply by creating the appropriate function and 
passing the result as a fuzzy property value to the 
engine. The following fuzzification methods have 
been implemented.  
• Range-based fuzzification: This method 

fuzzifies the value over a domain (UoD or 
Universe of Discourse). The fuzzification factor 
(a number in the interval [0,1]) indicates over 
which percentage of the domain the value will 
be fuzzified. The UoD width indicates how 
wide the function domain is. The greater the 
range, the wider the resulting fuzzy function 
will be. In other words, this method assumes 
that properties with a broader value domain 
(e.g. “price” in interval [0-10.000]) need not be 
matched as precise as properties with a narrow 
domain (e.g. “age” in interval [25-65]). An 
example: a numerical value is 1000 and the 
domain is 0-2000. A triangular fuzzification 
with fuzzification factor 0.1 will result in a 
function with base x-coordinates 900-1100. The 
same fuzzification over a domain 900-1100 will 
result in a function with base 990-1010. This 
ensures that the fuzzification is meaningful in 
the specific UoD context.  

• Fixed fuzzification: If no domain is available 
however, the method for fixed fuzzification or 
value-oriented fuzzification (presented next) can 
be applied. The fixed fuzzification results in a 
function with a specified base width, which 
does not depend on the actual value. An 
example: a numerical value is 1000 and the 
fuzzification is 250. The resulting function will 

ICEIS 2004 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

378



 

have a base with x-coordinates 875-1125. 
Clearly, this method of fuzzification should 
only be used when no UoD is known, as the 
fuzzification would be meaningless if the 
domain is extremely wide (for example 0-
1.000.000) and exaggerated if the domain is 
very narrow (for example 900-1100). 

• Value-based fuzzification: This fuzzification 
results in a function with a base width, 
depending in the actual value. The greater the 
value, the wider the base. An example: the value 
is 100 and the fuzzification is 0.1. The resulting 
function will have a base with x-coordinates 90-
110 (width=20). The same fuzzification on a 
value of 1000 will result in a base 900-1100 
(width=200). This fuzzification method is 
therefore only applicable in certain contexts, 
where larger values require less precise 
matches.  

 
Besides the fuzzification method, a fuzzifying 
function needs to be defined. Depending on the 
application context, this might for instance be a 
triangular, trapezoid or Gauss function. 

3.4 Aggregation 

The second step is to aggregate the fuzzified values 
in order to determine the degree to which these 
values correspond. Three standard methods have 
been implemented in the engine and, as was the case 
for the fuzzification operations, additional 
aggregation methods such as product or union can 
be easily implemented by higher level applications. 
The implemented methods are the following.   
• Intersection: The intersection operator models 

the fuzzy ‘AND’, and aggregates two fuzzy sets 
using function intersection. Intersection is a 
very strict yet commonly used form of 
aggregation. Using fuzzy intersection, two 
properties will only match well if they both 
contain high membership values. 

• Absolute difference: The absolute difference 
aggregates two fuzzy sets into a function 
representing the absolute difference of both. 
The absolute difference between piecewise 
linear functions is a new piecewise linear 
function,  and the absolute difference between a 
point and a piecewise linear function is a new 
point function. The difference aggregation does 
not take into account the actual values of the 
points, but only  compares the amount in which 
the both values differ. As a result, two very low 
values might match much better than a low and 
a high value. In certain contexts this might not 

be the expected behavior and in these cases a 
different aggregator should be used. 

• Bounded difference: The bounded difference 
determines the fuzzy difference between two 
functions f1 and f2, with a lower bound of 0. In 
other words, the difference is max(f1-f2,0). In 
contrast to the other aggregators, the order of 
the functions is important here. Indeed, the 
bounded difference of f1 and f2 is not 
necessarily equal to the bounded difference of f2 
and f1. As with the absolute distance, this 
aggregator is not suited for every form of 
matching as a set of low preferences might 
result in a perfect or near-perfect matching 
score. 

3.5 Defuzzification 

The aggregation step is followed by a final step of 
defuzzification a distance or matching value. This  
resulting value is a measure for the similarity of two 
property values. Depending on the data type of one 
or both of the properties, either a numerical value or 
range (partial matching) will be returned. As before, 
additional operators can be easily added at the 
Application layer, but the following operators are 
available by default. 
• Max: Simply returns the maximum membership 

value of a fuzzy value. This can be used to 
determine the maximum intersection value of 
two properties and will be used most often in 
fuzzy matching. However, if at least one of the 
properties is a discrete set and the property 
should only receive a high score if all of the 
options in the set match well, average 
intersection or a matching based on difference-
aggregation should be used. The max 
defuzzification used in combination with a 
bounded or absolute difference aggregation only 
compares the similarity of property values, 
without taking into account the actual values 
themselves. This means, two properties with 
both low, nearly equal values will score match 
very closely. In some cases, this is not expected 
behavior. In those cases distance function based 
on intersection can be used. 

• Average: Returns the average function value. 
This property distance can be used when at least 
one of the properties is a discrete set and the 
property should only receive a high score if all 
of the options in the set match well. If the 
property score should reflect the score of the 
best matching option, Max-Intersection should 
be used instead. 
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3.6 Matching 

Once all property distances are computed for each of 
the matching criteria, these distances can be turned 
into a case distance. Several case distance functions 
are available, however the weighted sum will be 
used most frequently in fuzzy matching (Zadeh 
1971). 
Combining an intersection aggregator and a Max 
defuzzification, will result in a matching value 
defined as  

 
with Ui and Si property values for a criterion Ci and 
Wi a weight for the criterion Ci. Combining an 
absolute difference aggregator and an Avg 
defuzzification, will result in 
 
 
 

 
 

 
 
The bounded difference and Avg defuzzification 
amount to (unweighted): 
 
 
 
 

4 FUZZY MATCHING ENGINE 
SCALABILITY TESTING 

This section provides a brief overview of the 
performance of the fuzzy case-based matching 
engine.  
 
The benchmarks were performed under the 
following test conditions: Hardware: P4-2,66Ghz, 
512Mb Ram;  Software: Windows XP, JDK1.4.1 
Configuration: Single threaded; Fuzzy config:  Fixed 
value fuzzification (other fuzzification types are 
marginally slower). All times are represented in 
milliseconds (ms). Two runs are performed per 
evaluation, to ensure initialization and configuration 
of the matching engine are not taken into account. 
 

4.1 Case scaling 

This test benchmarks matching speed for cases with 
a single property, in order to evaluate the scaling in 
function of the amount of cases. 1000 cases are 
evaluated in approximately 140 ms when fuzzy logic 
is used.  

 
Using a plain CBR algorithm, 1000 cases are 
evaluated in approximately 110 ms. The chart also 
illustrates that the engine scales in a logarithmic and 
not a linear fashion. This means the engine works 
optimally when processing a large amount of cases. 

4.2 Property scaling 

This test benchmarks matching speed for a single 
case, with an increasing amount of properties. 
  

Here we note that the fuzzy algorithm 
implementation is faster than standard CBR when 
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Figure 3: Results of the case scaling tests for the fuzzy 
matching engine 

Figure 4: Results of the property scaling test for the 
fuzzy matching engine 
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processing a limit amount of cases with a large 
amount of properties. 

4.3 Real-world scaling 

This benchmark tests matching speed for an 
increasing amount of cases, with 10 properties each.  
 

Most cases in real world applications can be 
represented with no more than 10 properties, so that 
this test gives a good idea of real world 
performance. 1000 cases can be ‘fuzzy’ matched 
against each other in approx. 400 ms (180 ms for 
standard CBR). This means the matching engine is 
capable of performing 25,000 fuzzy matches per 
second, which is faster than most databases can 
produce the data required for the matching. 

4.4 Fuzzy scaling 

All previous benchmarks were performed on pure 
numerical properties. This benchmark tests the fuzzy 
matching speed for an increasing amount of cases.   

Each case contains 7 properties, of which 2 are 
compound and nested within each other. Properties 

are created randomly and are of types numeric, 
interval, discrete weighted set, range set and fuzzy. 
Matching 1000 cases takes approximately 400 ms. 

5 CONCLUSIONS AND FUTURE 
WORK 

We have presented design and implementation 
issues that have influenced and defined the 
development of a fuzzy case-based matching engine. 
We stressed the flexibility of the engine, which is 
reflected in the variety of case data types on the one 
hand and fuzzy set theoretical matching operations 
on the other hand. We have analyzed the scalability 
of the engine, and found that the engine is capable of 
dealing with complex cases under increasing load 
conditions. The applicability of the matching engine 
is currently being investigated for e-marketplaces for 
student jobs (Kurbel et al., 2001; Hansenne et al., 
2003; Van de Walle 2003(b); Hansenne et al., 2004) 
and negotiation processes in electronic markets 
involving complex multi-issue cases (Van de Walle 
et al., 2001). We have recently developed a 
theoretical model to deal with incomplete case 
information and asymmetric matching processes 
(Van de Walle and Van der Sluys, 2002; Van de 
Walle 2003(a)), and our near term research objective 
is to implement that model in the engine’s 
application layer and investigate its applicability for 
real world electronic markets.   
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