
VIEWS, SUBJECTS, ROLES AND ASPECTS : A COMPARISON
ALONG SOFTWARE LIFECYCLE

Bouchra El Asri , Mahmoud Nassar*,**, Abdelaziz Kriouile
*Laboratoire de Génie Informatique

ENSIAS, BP 713 Agdal, Rabat, Maroc

Bernard Coulette
** Laboratoire GRIMM – IRIT

Université de Toulouse le Mirail, Département de Mathématiques- Informatique
5, allées A. Machado 31058 Toulouse cédex, France

Keywords: Complex system, Perspective, View, Viewpoint, Subject, Role, Aspect, Software lifecycle criteria.

Abstract: To face the increasing complexity of software systems and to meet new needs in flexibility, adaptability and
maintainability, classical object-oriented technology is not powerful enough. As pointed out by many
authors, one must take into account the multiplicity of actors’ viewpoints in complex systems development.
Views, subjects, roles and aspects are viewpoint-oriented concepts that permit a flexible adaptation of
modelling and use of systems. This article aims to provide software developers with a comparison between
view, subject, role and aspect approaches in respect to their principles and impacts on systems development
as well as on systems use. After a brief presentation of these approaches, we discuss their similarities and
differences by means of criteria positioning them along the software lifecycle.

1 INTRODUCTION

Nowadays, companies must face complexity and
rapid changes of software systems. Profiling,
flexibility, reusability, adaptability, interoperability,
maintainability and integrity are the main keywords
of overcoming challenges. A number of researches
in software modelling have attempted to meet those
needs. We believe that the conjunction "information-
actor" is the strategic gateway to reach this hope.
Indeed, actor-centred technologies allow developers
to concentrate on those parts of the process and
domain models that will be important for their job.

Researches in software modelling and
development have spawned various concepts related
to view and viewpoint concepts. The view concept
was first introduced by Shilling and Sweeny
(Shilling et al., 1989) as a filter on global interface
of a class. This concept has been then largely
investigated in the field of databases (Abiteboul et
al. 1991, Debrauwer 1998), Software Engineering
(Finkelstein et al. 1990), Requirement Engineering
(Charrel, 2002) and Object-oriented development

(Carré et al. 1991, Coulette et al. 1996,
Vanwormhoudt 1999, Coulondre et al. 1999,
Motsching-Pitrik 2000, Nassar et al. 2003). In UML
(OMG, 2001), the view notion is a way of
structuring system modelling according to
development progress: use cases, logical,
components and deployment views.

The viewpoint notion was introduced under
closely related terms such as role (Anderson et al.,
1992), subject (Harrison et al., 1993), and more
recently aspect (Kiczales et al., 1997), etc.

Harrison and Ossher (Harrison et al., 1993)
proposed subject-oriented programming as a way to
build integrated multi-perspective applications.

Role (Anderson et al., 1992) and Role modelling
(Kristensen et al. 1996, Riehle et al. 1998, Gottlob et
al. 1996) were proposed to express and to abstract
objects interaction and change.

Introduced by Kiczales et al. (Kiczales et al.,
1997), AOP (Aspect Oriented Programming) aims to
model non-functional concerns into aspects.

Our team has been working on the elaboration of
a view-based object-oriented methodology since
1993. We have defined a view-based extension of

139
El Asri B., Nassar M., Kriouile A. and Coulette B. (2004).
VIEWS, SUBJECTS, ROLES AND ASPECTS : A COMPARISON ALONG SOFTWARE LIFECYCLE.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 139-146
DOI: 10.5220/0002650201390146
Copyright c© SciTePress

Eiffel called VBOOL (Marcaillou et al., 1994) and a
view-based analysis and design method called
VBOOM (Kriouile, 1995). We are working now on
VUML (Nassar et al., 2003), a view-based
extension of UML that provides the concept of
MultiViews component whose goal is to store and
deliver information according to user viewpoints.

Objectives of Mili et al.'s approach (Mili et al.,
2000) are quite similar to VBOOM's ones. For those
authors, an object can be described as a basic object
and a variable set of views representing functional
facets that can be added or removed dynamically to
reflect the changing roles of the object during its
lifetime.

This paper results from a recent study of the state
of art in the field of viewpoint-oriented approaches.
This study took place in the context of a French-
Morocco network in Software Engineering.

In contrast to two similar works – a comparison
with a focus on reuse (Bendelloul et al., 2000), and a
position paper from Bardou (Bardou, 1998) – our
goal is to provide developers with an assessment of
such viewpoint-oriented approaches all along the
software lifecycle. Hence, we discuss similarities
and differences among those approaches according
to two sets of criteria: development and run-time
criteria.

This paper is structured as follows : the 2nd
section describes the view, subject, role and aspect
approaches; the 3rd section presents similarities and
differences among them according to given criteria.
We conclude in section 4.

2 VIEWPOINT-ORIENTED
APPROACHES

In this section, we describe a set of viewpoint
approaches. Our list is not exhaustive but it covers
the most representative approaches within viewpoint
concept.

2.1 Subject-Oriented approach

Subjectivity as a way of object-oriented
programming was introduced by Harisson and
Ossher (Harrison et al., 1993). It allows to express a
set of specifications and behaviours shared by
several actors. Subject is defined as “a collection of
state and behaviour specifications reflecting a
particular gestalt, a perception of the world at large,
such as seen by a particular application or tool”
(Harisson et al., 1993).

A subject is not a class but a class inheritance
hierarchy where each class defines a structure of its

instances’ properties and behaviours. A class may
appear in different subjects. A subject is an
abstraction that can be instantiated in several
domains to obtain executing instances. Each instance
includes the actual data manipulated by a particular
subject.

An object can activate several subjects
simultaneously. The essential characteristic of
subject-oriented programming is that different
subjects can be separately defined and operate upon
shared objects. All active subjects share object
identities. The universe of system is the composition
of all active subjects done in respect to subject
composition rules. It reflects the composition of
several application slices representing separate
functional domains. With that composition it is
possible to extend subjects and to introduce new
subject activation without disrupting others. The
composition (Ossher et al., 1995) consists of (i) the
union of the interfaces emanating from the
composed subjects, (ii) and the composition of the
implementations of the methods that are defined in
more than one subject.

2.2 Role approach

The main objective of the role concept is to hold
change of object behaviour during its lifetime. In
other words, the role concept permits the original
classification of an object to change in time (Pernici
1990, Kristensen 1996). A role is a temporary view
on an object. Role is expressed by extrinsic features
that may change during lifetime. (Kristensen et al.,
1996) define a role as a “set of properties which are
important for an object to be able to behave in a
certain way expected by a set of other objects”. For
Riehle et al. (Riehle et al., 1998) a “role type
describes the view one object holds of another
object”. An object may play several roles at the
same time. Therefore, roles may express the
participation of an object to accomplish an activity
(Kristensen 1996, Andersen et al. 1992, Andersen
1997).

To explicitly define what the role concept is for,
Kristensen introduces a new notion, roleification as
an abstraction way to express :

Dynamic classification: an object can be
dynamically reclassified changing its role during
lifetime.

Non-generalization: a role is not a specialization
of its corresponding object but it exists together with
it in a dependence way.

Identity: a subject (object with currents roles)
holds a unique identity even if changing roles during
its lifetime.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

140

Extension only: a role can only add extrinsic
features to an object but cannot remove or change
any intrinsic ones.

Multiplicity: an object may hold several roles at
the same time.

Andersen also introduced role models. Role
models are much like traditional activity diagrams.
In OORAM (Reenskaug, 1995), role models include
entities and behaviours that are relevant to a
particular collaboration. (Riehle et al. 1998) define a
role model as a description of a set of collaborating
objects which focus on a single purpose. Thus, role
models provide a kind of separation of concerns.

Role models can be composed. A role model
composition is a role model in which the individual
role models interact according to role type
constraints.

2.3 View programming approach

To support the decentralized development of object-
oriented applications, Mili et al. propose the view
programming approach, in which a viewpoint is
defined as a generic template that abstracts
functional behaviour independently from any
domain (Mili et al., 2000). A view is an instance of a
viewpoint for a particular domain. Typically, an
object may support a set of functionalities or views.
Each object of an application is seen as a set of core
functionalities (core object) that are available to all
the users of the object, and a set of slices (views)
that are specific to particular users. Views may be
added or removed during run-time. The set of views
“attached” to an object determines its behaviours
and the messages to which it can respond, and the
way it responds to them. Mili el al. propose a set of
mechanisms to manage attachment/detachment and
activation/deactivation of views.

The model proposed is a set of objects (core and
view objects). In such model, sharing features is
implemented by delegation mechanism while
sharing behaviours is managed by dispatching
mechanism. The invocation of methods supported by
several views is processed by composition rules. The
response to a message depends on the views
currently attached to its core instance. The
dispatching mechanism is inspired from the
composition rules proposed by Harrison and Ossher
which consist in combining the different
implementations (Harisson et al. 1993, Ossher et al.
1995).

Furthermore, Mili et al. propose a run-time
composition of views. Composing them on-demand
during run-time allows objects to change their
behaviours in non-predictable ways.

2.4 View-based Unified Modelling
Language (VUML)

VUML (Nassar 2003, Nassar et al. 2003) is a view-
based analysis/design method. VUML provides a
modelling language (UML extension) and a process
that allows a view-based modelling from analysis to
implementation. The main new feature of VUML is
the concept of MultiViews component whose goal is
to encapsulate and deliver information according to
the user profile. A MultiViews component is a unit
of abstraction and encapsulation composed of a
default view (base) - common part of the entity
accessible by every actor (end user or not) - and a set
of views (extending this common part) representing
actors' needs and rights. Each view corresponds to
one actor. View activation (linkage to the current
user's viewpoint) is done at execution time. Views
management (add, suppress, lock, unlock) is done
dynamically through an implicit administrative view
(Nassar et al., 2002). Views are related to the base
through a view-extension relation which is a
dependency relation. It is not an inheritance relation
because one cannot create an instance of a view
independently from an instance of the default view.

A MultiViews component may have sub-
components that become automatically multiviews.
Views of the parent component become views of the
child one. It is yet possible to define new views on
the sub-component or to redefine a parent view.

Furthermore, VUML supports the dynamic
change of viewpoints and offers mechanisms to
manage views dependencies and maintain the
internal coherence of a MultiViews component. To
achieve that goal, VUML offers a view-dependency
relation to make explicit declaration of dependencies
between views, and OCL (Object Constraint
Language) expressions that are attached to
dependency relations.

2.5 Aspect-Oriented Software
Development (AOSD) approach

Aspect-oriented approach (Kiczales et al., 1997)
aims to modularise non-functional aspects during
software developement. The core assumption of
aspect programming is that there are concerns which
cannot be cleanly encapsulated in traditional object
structure and therefore the resulting code is tangled
Such concerns are called aspects. Typical examples
of aspect are performance, security, logging,
synchronization, optimisation, persistence, etc.
Usually, such concern interweaves with many
objects. This orthogonal intersection is called
crosscutting concern. Aspect-oriented programming

VIEWS, SUBJECTS, ROLES AND ASPECTS: A COMPARISON ALONG SOFTWARE LIFECYCLE

141

(AOP) is a technology for separation of crosscutting
concerns into aspects. Kiczales et al. distinguish
between component and aspect because, contrary to
a component, an aspect cannot be cleanly
encapsulated into a generalized procedure (Kiczales
et al., 1997).

Aspect weaver is the underlying infrastructure
which process the component and aspect languages
composing them properly to produce the desired
total system operation.

To support such environment, there are different
available techniques. The most popular are AspectJ
and HyperJ. AspectJ is an aspect language which
offer mechanism to modularise and compose
crosscutting concerns. It supports aspects as entities
that contain join points used to change class
definition. HyperJ developed by IBM is an offspring
of subject programming providing weaving tools.
Hence it is considered as aspect oriented
programming.

3 COMPARATIVE STUDY ALONG
SOFTWARE LIFECYCLE

As seen in the previous section, several approaches
deal with the viewpoint notion, quite often under
closely related terms. Main advantages of
viewpoints are: (i) reducing complexity of the
development by focusing on special portions of
systems according to developer skills; (ii) improving
accuracy, simplicity, and access right management
in respect to user profiles.

Comparing different viewpoint approaches will
then concern the two states of software product:
development and use. In this section we study
differences and similarities between viewpoint
approaches according to a well known set of
development and use criteria.

3.1 Development criteria

For development process, we have identified the
following criteria : use of viewpoints along the
development process, reusability, code
understandability, and testability.

Use of viewpoints along the development
process: we believe that supporting viewpoints
throughout the development process is extremely
important. Indeed, it permits safe tractability, high
reusability, efficient comprehensibility, non-tangled
deliverables and so on. So, we study the integration
of the viewpoint notion from different approaches in
different stages of development process:

Analysis stage: Among viewpoint approaches,
studied in this paper, VUML is the only one (in our
knowledge) that proposes a process to explicitly
identify actors and their needs in the analysis stage.
VUML introduces the notion of user viewpoint at
the very beginning of the analysis stage since a
viewpoint is associated to each actor (end user or
not) of the system. This enables developers to
identify the right requirements and avoid non-
needed features.

Design stage: Supporting viewpoints at design
stage allows designers to modularise the system
modelling. Furthermore, using CASE tools to
visualize and check viewpoint-based models can
widely increase the efficiency of software
development.

In subject-oriented design (Clarke et al., 1999), a
design subject describes only pieces of software
concerning a given perspective. The integration of
subject models builds the complete design.

Role modelling within design (Riehle, 1998)
allows to produce frameworks with well-defined
boundaries and defines how to use it with the help of
free role types of free role models.

Designing in Mili et al.'s approach (Mili et al.,
2000) uses classical aggregation association to
model application objects. An application object
consists of a core object to which views can be
added or removed during run-time. At design time
all views are aggregation-based linked components.

The first VUML process phase (analysis) results
in a set of UML models (one model per actor). At
the design level, those models are melted together
into a global VUML model made of MultiViews
components. VUML addresses the model
consistency preservation issue by offering
mechanisms to specify dependencies among views
during that design phase.

For AOSD, (Suzuki et al., 1999) propose a
number of new stereotypes to express aspect class,
weave operation and woven classes.

Implementation: A number of approaches have
been proposed to support viewpoint coding. We
distinguish those which introduce new programming
concepts and keywords as Role components
(VanHilst et al., 1996), Subject-Oriented
Programming (SOP) (Harrison et al., 1993), Aspect-
Oriented Programming (AOP) (Kiczales et al.,
2001), View programming (Mili et al., 2000), and
those which use classical object-oriented
programming concepts such as VUML (Nassar
2003, Nassar et al. 2003). We also make distinction
between compile-time and execution-time. SOP and
AOP integrate concerns automatically at compilation
time while view programming (Mili et al. 2000)
allows dynamic change of views. Finally, we
consider approaches that support code generation.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

142

As far as we know, VUML distinguishes from the
others in that it provides a generic implementation
pattern to generate object-oriented code (Java, C++,
Eiffel) from a VUML model (Nassar et al., 2002).

Reusability: It is an essential quality criterion
that concerns all stages of the development lifecycle.

The role modelling does not encapsulate
viewpoint into an entity of abstraction. But the
distinction done between intrinsic properties and
those called extrinsic ones permits the reusability of
intrinsic ones.

Mili’s and subject approaches take into account
the actor’s perspective from the design phase. A
perception can be applied on several domains
enhancing therefore the reusability of models and
code.

VUML introduces actors and thus viewpoints
during the first step of development. Each actor is
therefore elicited, its needs are analysed, conceived
and implemented. Hence, deliverables (analysis
documents, models, code) regarding an actor can be
easily reused.

AOP allows the encapsulation of non-functional
requirements of a system as aspects that may be
woven and reused by a system soliciting them.

Code understandability: The process of software
evolution and updating addresses repairing of
defaults, enhancing functionalities, and adding
object interactions. Experience asserts that half of
evolution cost consists of code understanding and
comprehension.

Modelling with subjects, roles, views or
viewpoints permit to describe systems into
comprehensible models and programs.

AOP whose goal is to avoid tangled code is
probably the best approach to write clean and
understandable code.

However, reverse engineering remains a complex
task for all the approaches.

Testability: Profiling allows different customers
with different skills to focus upon their domains.
This focus allows deep black box testing since tester
are bounded to the customer’s domain of interest.
On the other hand, the separation of different actors
allows a good code understanding that facilitate the
white box tests. We can thus deduct that viewpoint-
oriented approaches (view, role, subject) favour a
better testability.

AOP approach allows focusing upon the
functional tests in a first time letting the quality and
non-functional concerns for a second time.

3.2 Run-time criteria

For software use we have identified the following
criteria: profiling and access right management,

dynamism, multiplicity, identity and integrity, and
maintainability.

Profiling and access right management: We
can define profiling as a means of information
accuracy and access right management. Each actor
holds a profile that specifies its available data,
functionalities and visualisation needs and so on.
The viewpoint notion as defined by different
approaches is an obvious way for profiling. Software
are specified, designed and coded according to
different perspectives. AOP is an exception since it
is a means of separation of non-functional concerns.

Dynamism: Activation/deactivation mechanisms
proposed by Nassar et al. (Nassar et al., 2003) and
Mili et al. (Mili et al., 2000) allow dynamic
evolution of profiles. In SOP, the choice of the
system universe (set of active subjects) is done at
compile-time. No run-time evolution is allowed.

Multiplicity: In a distributed system, different
actors with different profiles may access different
views of an object simultaneously. Mili et al. (Mili
et al., 2002) propose DOC (Distributed Object
Configurator) as a tool to choose the set of visible
views and to manage the methods dispatching as
done by subject composition. Nassar et al. (Nassar et
al., 2003) manages this multiplicity by a
management view tool. Role modelling allows an
object to play several roles at the same time. The
invocation of the right subject method is guided by
the context notion.

Identity and integrity: All profiles, perspectives
and contexts share the same set of object identities
(differently classified). In VUML, SOP and role
modelling, different views of an object are extension
of the core object and do not hold any identity.

In Mili et al’s approach, both the core object and
view have an identity. Views are components that
are added or removed to/from the application object
according to needs.

 In AOP, aspects are not components. An aspect
does not hold any identity. However, an aspect
crosscut several objects (several identities).

Maintainability: Most software engineering is
software evolution or maintenance. This phase
represents a considerable amount of lifecycle costs.

In our study we take in account both evolution
and corrective maintenance. Evolution or scalability
is insured by the application of the viewpoint notion.
Indeed, addition of new needs related to a given
actor, or addition of a new actor does not disturb the
system since viewpoints are separated. The
viewpoint is a means of reducing scalability cost.
The corrective maintenance can reverberate back on
all the levels of development lifecycle. So the earlier
actors are taken into account within the development
process, the less is the maintenance cost. AOP
allows writing clean code that is easily maintainable.

VIEWS, SUBJECTS, ROLES AND ASPECTS: A COMPARISON ALONG SOFTWARE LIFECYCLE

143

3.3 Recapitulative tables

We summarise our comparative study in the
following two tables. Table 1 proposes an
assessment of development process criteria for the

approaches described above. In table 2, the focus is
put on execution-time criteria. For both tables, cells
are filled with stars that represent the quality degree
of each criterion.

Table 1: Recapitulative table synthesising development process criteria
Use of viewpoints along the

development process
Reusability

Analysis Design Implementation Analysis Design Implementation

Code under-
standability

Testability

SOP

- *** ** - *** ** ** **

Roles
- ** * - ** * ** **

VP
 - *** ** - *** ** ** **

VUML
*** *** ** ** ** ** ** **

AOP

- * *** - ** *** *** **

Table 2: Recapitulative table synthesising run-time criteria

 Profiling and
access right

Dynamism Multiplicity Identity and
Integrity

Maintai-
nability

SOP
*** - *** *** **

Roles
** - *** *** *

VP
*** *** *** ** **

VUML
*** *** *** *** **

AOP - * - - **

Legend: *** : Strongly; ** : Moderately; * : Weakly; - : Not supported or not described in the literature
Acronyms: SOP: Subject-Oriented Programming; VP: View Programming; VUML: View-based UML; AOP: Aspect-
Oriented Programming

4 CONCLUSION

Undoubtedly, concepts of viewpoint or related
notions help decentralised development, enhance
reusability, improve information accuracy and
consistency, facilitate code understanding and
reduce test time in software production. These
concepts can be used however in many ways. View,
role subject and aspect are the main viewpoint-
oriented approaches. In fact, each approach offers

more or less advantages all along the software
production lifecycle.

In this paper, we presented these approaches and
compared them thanks to lifecycle criteria. Our goal
is to provide software developers with an assessment
of those approaches as objective as possible.

Separation of functional concerns allows
different skilled developers to deeply focus on their
job in a decentralized way. Subject, role and view
based approaches integrate this kind of separation
during the design stage and provide mechanisms to
co-ordinate and compose separated concerns. The
originality of VUML is that it provides a process to

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

144

support this functional separation of concerns in a
consistent way from analysis to implementation.

Separation of non-functional concerns allows
developers to firstly discard quality requirements
and orthogonal aspects to better focus on their job’s
core.

Both functional and non-functional separations
make deliverable products (documents, models and
code) cleaner, therefore facilitate code
understanding and enhance maintainability.

Static composition of subjects, which are
provided by role, subject and view programming
approaches, and the weave of aspects, enhances
reusability.

Dynamic view composition provided by Mili’s
approach allows dynamic change of system
universe.

Dynamic activation and deactivation of view
proposed and managed by Mili et al. and Nassar et
al. permit run-time change of system behaviour.

The role, subject and view approaches allow
profiling, which enables access right management
and information relevance, and multiplicity that
permits distributed and coherent access to system.

Aspect-oriented programming does not take
explicitly into account users but favour a type of
modularised development that meets some of the
quality criteria mentioned above. In this respect, this
approach is complementary from view-oriented
ones.

REFERENCES

Abiteboul S., Bonner A., 1991. Objects and Views. Proc.
of ACM SIGMOD, pp. 238-24.

Aldawud O., Elrad T., Bader A., 2001. A UML Profile for
Aspect Oriented Modeling. OOPSLA 2001 workshop
on aspect Oriented Programming.

Andersen E. P., Reenskaug, 1992. System Design by
Composing Structures of Interacting Objects. Proc. of
the 6th European Conference on Object-Oriented
Programming (ECOOP'92), LNCS, Vol. 615. pp. 133-
152, Utrecht, The Netherlands. Springer-Verlag.

Andersen E. P., 1997. Conceptual Modeling of Objects. A
Role Modeling Approach. PhD thesis, Department of
Informatics, University of Oslo.

Bardou D., 1998. Roles, Subjects and Aspects: How do
they relate? Position paper at the Aspect Oriented
Programming Workshop. 12th European Conference
on Object-Oriented Programming (ECOOP '98),
LNCS, vol. 1543, Springer.

Bendelloul S., Mili H., Dargham J., Mcheick H., 2000. A
comparison of view programming, aspect-oriented
programming, subject-oriented programming from a

reuse perspective. Proc. of 13th ICSSEA, Volume 4,
Paris, France.

Carré B., Geib J.M. , 1991. The Point of View Notion for
Multiple Inheritance. Proc. of ECOOP/OOPSLA.

Charrel P.J., 2002. The Viewpoint Paradigm: a semiotic
based Approach for the Intelligibility of a Cooperative
Designing Process. Australian Journal
of Information Systems, Vol. 10, n° 1. pp. 3-19.

Clarke S., Harrison W., Ossher H., Tarr P., 1999.
Separating Concerns throughout the Development
Lifecycle. Proc. Of ECOOP'99 Workshop on Aspect-
Oriented Programming, Lisbon, Portugal.

Coulette B, Kriouile A., Marcaillou S., 1996. L’approche
par points de vue dans le développement orienté objet
des systèmes complexes. Revue l’Objet vol. 2, n°4, pp.
13-20.

Coulondre S., Libourel T., 1999. Viewpoints Handling in
an Object Model with Criterium-Based Classes. In
DEXA’99, Florence. LNCS n°1677, pp. 573-582.

Debrauwer L., 1998. Des vues aux contextes pour la
structuration fonctionnelle de bases de données à
objets en CROME. Thèse de Doctorat, LIFL, Lille.

Finkelstein A., Kramer J., Goedicke M., 1990. Viewpoint
Oriented Software Development. Proc. of Software
Engineering and Applications Conference, pp. 337-
351, Toulouse.

Gottlob G., Schrefl M., Roeck B., 1996. Extending object-
oriented systems with roles. In ACM Transactions on
Information Systems, vol. 14 n. 3, pp. 268-296.

Harrison W., Ossher H., 1993. Subject-oriented
programming : a critique of pure objects. Proc. of
OOPSLA’93, Washington D.C., pp. 411-428.

Kiczales G., Lampng J., Mendhekar A., Maeda C., Lopes
C. V., 1997. Aspect-Oriented Programming. Proc. of
the European Conference on Object-Oriented
Programming (ECOOP). Finland. Springer-Verlag
LNCS 1241.

Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J.,
Griswold W.G., 2001. An Overview of AspectJ. Proc.
of ECOOP’, Springer Verang LNCS2072.

Kriouile A, 1995. VBOOM, une méthode orientée objet
d’analyse et de conception par points de vue. Thèse
d’Etat. Université Mohammed V de Rabat.

Kristensen B. B., 1996. Object-oriented modeling with
roles. In John Murphy and Brian Stone, editors,
Proceedings of the 2nd International Conference on
Object-Oriented Information Systems, pages 57–71.
Springer-Verlag.

Kristensen B. B., and Osterbye K., 1996. Roles :
Conceptual Abstraction Theory & Practical Language
Issues. Theory and Practice of Object Systems
(TAPOS), 143-160, Special Issue on Subjectivity in
Object-Oriented Systems.

Marcaillou S., Coulette B., Kriouile A., 1994. Visibility :
A new relationship for complex system modelling. In
TOOLS USA'94. TOOLS13, Prentice Hall.

VIEWS, SUBJECTS, ROLES AND ASPECTS: A COMPARISON ALONG SOFTWARE LIFECYCLE

145

Mili H., Dargham J., Mili A., 2000. Views: A Framework
for Feature-Based Development and Distribution of
OO Applications. Proc. of 33rd Hawaii Int. Conference
on System Sciences. Honolulu, HI, January 4-9.

Mili H., Mcheick H., and Sadou S., 2002. CorbaViews –
Distributing Objects that Support Several Functional
Aspects, in Journal of Object Technology, vol. 1, no.
3, Special issue : TOOLS USA 2002 proceedings, pp.
207-229.

Motschnig-Pitrik R., 2000. The Viewpoint Abstraction in
Object-Oriented Modeling and the UML.
International Conference on Conceptual Modeling
(ER 2000). Salt Lake City, Utah, USA.

Nassar M., Coulette B., Kriouile A., 2002. Vers un
langage de modélisation unifié supportant les vues.
Rapport IRIT 02-29-R. Octobre 2002, Toulouse.

Nassar M., 2003., VUML : a Viewpoint oriented UML
Extension. Proc. of the 18th IEEE International
Conference on Automated Software Engineering
(ASE’2003), Doctoral symposium, Montreal, Canada.

Nassar M., Coulette B., Crégut X., Ebsersold S..,
Kriouile A., 2003. Towards a View based Unified
Modeling Language. Proc. of 5th International
Conference on Enterprise Information Systems
(ICEIS’2003), Angers, France.

OMG, 2001. Unified Modeling Language, version 1.4;
http://www.omg.org/cgi-bin/doc?formal/01-09-67

Ossher H., M. Kaplan M., Harrison W., Katz A. and
Kruskal V., 1995. Subject-oriented composition rules.
In Proc. of OOPSLA’95, Austin, TX, pp. 235-250.

Pernici B., 1990. Objects with roles. Proc. of the ACM--
IEEE Conference on Office Information Systems,
Cambridge, MA, 1990.

Reenskaug T., 1995. Working with Objects : The
OORAM Software Engineering Method. Englewood
Cliffs: Prentice Hall.

Riehle D. and Gross T., 1998. Role Model Based
Framework Design and Integration. Proc. of the
Conference on Object-Oriented Programming
Systems, Language, and Application (OOPSLA '98).
ACM press, pp. 117-133.

Shilling J., Sweeny P., 1989. Three Steps to Views, Proc.
of OOPSLA’89, New Orleans, LA, pp. 353-361.Suzuki
J., Yamamoto Y., 1999. Extending UML with aspects
: Aspect support in the design phase. In Proc. of the
third ECOOP Aspect-Oriented Programming
Workshop.

VanHilst M. and Notkin D., 1996. Using Role
Components to Implement Collaboration-Based
Designs. in OOPSLA'96, San-Jose, CA, 6-10 Oct.,
pp. 359-369.

Vanwormhoudt G., 1999. CROME : un cadre de
programmation par objets structurés en contextes.
Thèse de Doctorat en Informatique, LIFL, Université
des Sciences et Technologies de Lille.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

146

http://www.omg.org/cgi-bin/doc?formal/01-09-67

