
ARCO: MOVING DIGITAL LIBRARY STORAGE TO GRID
COMPUTING

Han-fei, Nuno Almeida, Miguel Loureno, Paulo Trezentos
ADETTI/UNIDE

Av. Foras Armadas, Edif. ISCTE, 1600-082 Lisboa, Portugal

Jos Borbinha, Joo Neves
Biblioteca Nacional

Direco de Servios de Inovao e Desenvolvimento
Campo Grande, 83 - 1749-081 Lisboa, Portugal

Keywords: Distributed Multimedia Storage, Grid Computing, Digital Library, HPC

Abstract: Storage has been extensively studied during the past few decades (Foster et al., 1997; Jos Guimares, 2001).
However, the emerging trends on distributed computing bring new solutions for existent problems. Grid com-
puting proposes a distributed approach for data storing. In this paper, we introduce a Grid-based system
(ARCO) developed for multimedia storage of large ammounts of data. The system is being developed for
Biblioteca Nacional, the National Library of Portugal. Using Grid informational system and resources man-
agement, we propose a transparent system where TeraBytes of data are stored in a beowulf cluster built of
commodity components with backup solution and error recover mechanisms.

1 INTRODUCTION

The National Library of Portugal (BN - Biblioteca
Nacional) is a patrimonial library. This presents spe-
cial motivations to pursue some goals at both national
and international levels, related with a wide range of
new technical area especially concerning with digital
publishing; digitization; preservation of cultural ar-
tifacts; metadata creation, processing and exchange;
services for resource discovery, access and interoper-
ability; etc. Each of these areas brings new expecta-
tions and requirements for new skills, which BN has
been identifying and developing during recent years
in trials and pilot initiatives. As a result, valuable ex-
pertise has been built, resulting in the actual initiative
for the National Digital Library (BND - Biblioteca
Nacional Digital).

The BND is defined to serve two main purposes.
The first and most immediate is the development of
an operational framework by which the BN will ad-
dress specific problems posed by the management of
large collections of digital and digitized items. As a
side effect, we expect to reach a critical mass (in tech-
nology, knowledge and contents) after which we will
be able to address the other areas in a complementary
approach.

The actual moment of the BND is not anymore
to be experimental, presenting short-term results, but
to be stable and trustworthy. That requires thinking

seriously in stable models and long-term sustainable
strategies for the developments and convergence with
the traditional library. Also, this has to be done in
accordance not only with our general mission, but es-
pecially taking in account the limited resources that
BN will be able to reserve for it.

To provide us the expected necessary flexibility, it
was decided that the technical solutions will be based
mainly on open and scalable technology, to be built
and integrated incrementally. This will make it also
possible to better consolidate the results with the tra-
ditional library’s services.

The main services that the BND is expected to as-
sure are the storage, search, retrieval and preservation
of digital resources. In this paper we are addressing
the problem of the storage.

2 PROPOSED ARCHITECTURE

The goal of ARCO system is to provide and managing
a transparent layer for storing large amounts of data.
The high level requirements suggest that all interac-
tions with lower or higher abstractions layers would
be throughout interfaces. This interfaces should be
public and well defined in the System Definition doc-
ument.

Figure 1 depicts the ARCO architecture. The left
figure represents the interaction of ARCO system

64
-fei H., Almeida N., Loureno M., Trezentos P., Borbinha J. and Neves J. (2004).
ARCO: MOVING DIGITAL LIBRARY STORAGE TO GRID COMPUTING.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 64-69
DOI: 10.5220/0002651400640069
Copyright c© SciTePress



Figure 1: ARCO high level view

with the operating system, the network resources and
with Globus middleware. ARCO uses several OS sys-
tem calls to access the local file system, uses net-
work resources for integration purposes and Globus
for Grid Services(Foster, 2001; Open Grid Services
Infrastructure (OGSI), 2003). ARCO is build over
Globus toolkit 3.0 that supports Webservices (Foster
et al., 2002).

The right part of 1 contains the internal components
of ARCO system. In the upper level we have the inter-
face layer that is responsible both for providing graph-
ical interfaces for storing data and retrieving it. The
graphical interfaces are implemented in HTML/PHP
but they could be implemented with other program-
ming language since there is a low level layer with
commands for the basic features of the system.

3 SYSTEM COMPONENTS

The ARCO system is divided in three units, GOD
(Digital Object Management); GG (Grid Manage-
ment) and Monitorization. These are the types of
operations that users are allowed to do, according to
their functions. In each of these units exist subunits
according to the type of tasks allowed to the users.

3.1 GOD

This section can be accessed both by the system ad-
ministrator and other users. It has several operations
regarding Digital Objects, such as Store (Stores a new
object in the grid), Remove (Removes an existing ob-
ject from the grid), Copy (Copies an object from the
grid to the working directory), Replace (Replaces an
existing object with a new one), Update (Updates an
object with a newer version) and Recover (Recovers a
deleted object). When removing an object, the object
is not physically removed. Instead, it is moved to a
different location, allowing its recovery. The physical
removal is only allowed to the system administrator.

3.2 GG

The system management operations are available in
this unit. The system administrator is responsible for
performing these tasks, concerning to “Grid Nodes”,
“Volumes”, “Users” and “Groups”.

The Node Management subunit is where the grid
nodes’ configurations are done. The operations avail-
able are Add Node (Add a new node to a vol-
ume), Remove Node(Remove a node from a vol-
ume),Edit Node(Edit the node configuration), List all
Objects(List all objects presented in the node) or Lo-
cate an object(Locate one object in the system). This
kind of operations are very useful because it’s very
easy to add or remove one node from the system, and
if a node with objects is removed it’s possible to syn-
chronize the volume or use the volume mirror as mas-
ter.

The Volume Management is where the operations
related to volumes are done. The role of operations
possible are Add Volume(Add a new volume to the
system), Remove Volume(Remove a volume from
the system), Edit Volume(Edit volume information),
List Volumes(List all volumes) and Synchronize Vol-
ume(Synchronize volume information with the vol-
ume mirror). Here there are several considerations to
have in mind. One volume can only have one mirror,
but when a master volume is deleted or shutdown the
mirror one will pass to master automatically. It’s not
possible to remove a volume that has nodes associated
to it. Every time that one object is inserted in one vol-
ume it is inserted automatically in his mirror, if there
is one.

In the User Management subunit the user can do
several operations related to the system’s users. The
user management operations are Add User (Adds a
new user to the system), Remove User (Removes a
user from the system), Edit User (Edits the user’s
data) and List Users (Lists all the users).

In the Group Management area the user can do
several operations related to the system’s groups. The
group management operations are Add Group (Adds
a new group to the system, specifying the group’s ac-
cess permissions on GOD, GG, and Monitorization),
Remove Group (Removes a group from the system),
Edit Group (Edits the group’s data and access permis-
sions) and List Groups (Lists all the groups). It’s not
possible to remove a group that has users associated
to it.

3.3 Monitorization

The Monitorization is done over a grid node. It is
very useful to analyze node performance and behavior
along the time and setup the needed alarms.

The main goal is to prevent system failures by
warning the administrator and provide information to

ARCO: MOVING DIGITAL LIBRARY STORAGE TO GRID COMPUTING

65



the users, that can be used to improve the storage
strategy.

It presents information of the actual state of the
node (available space, used space, cpu temperature,
detected errors, system logs, etc.). It is also possible
to setup alarm values and desirable actions like warn-
ing the system administrator or do a load balancing.

4 LOW LEVEL OPERATIONS

4.1 Object Description

Figure 2 is the general system structure of the ARCO
system. The ARCO system can be abstracted into dif-
ferent level from several viewing angles.

Firstly, the whole concept of digital library can be
broken down into volumes, grid nodes, file systems,
books. Secondly, actions can be from groups, users,
and can be further divided as basic operations. Fi-
nally, operations can be taken to objects in different
abstraction level of ARCO system.

The ARCO system provides webpage interface by
using API function calls, as well as command line in-
terface.

ARCO metadata catalogue is used to provide de-
tails of object description in different level, opera-
tion description, and system configures information
description.

There are two interfaces between the high level
webpage toolkit and the low level function call re-
alization. The first is the data interface that uses
the common metadata information, the second is the
function call control interface. The metadata set in-
cludes information about user and user group descrip-
tion, digital library general description, volume stor-
age object description, grid nodes description, book
object description, and management operation de-
scription.

The user object has fields of user id, user name,
password, and group id. The description of group ob-
ject includes group name and group id. The permis-
sion description provides detailed control information
about users, groups, and different operations. The
digital library virtual structure is described in several
levels.

The full storage of the library can be divided into
normal part and mirror part. The mirror storage is a
real time backup of the normal storage in the meaning
of every operation to book object. The mirror mech-
anism demands every operation to the normal storage
in the book object level will also take place mean-
while to the mirror storage. The library storage ob-
ject, normal or mirror, is composed of one or several
volume objects. The volume object description de-
picts volume attributes, such as volume name, mirror-

ing pointer, and other management information. Ev-
ery volume is composed by one or several grid host
nodes. Each node can only belong to one volume.

The grid node is not only the component of the stor-
age volume from the view point of digital library ab-
straction, but also it is the basic unit of computing
grid environment for staging operations, as well as
the basic unit of grid computational information and
resource discovering entity.

The MDS(Fitzgerald et al., 1997) in grid node pro-
vides resource information, such as every mounted
file system. The ARCO system utilizes the MDS
computational resource information by querying the
LDAP server default port 2135 in every grid node. In
ARCO metadata catalogue, the grid node description
include host full domain name and ip address.

There are different operations which can be taken
to different objects. The smallest basic object is the
digital object1. The digital object description gives
out the details of a book, for instance. The book ob-
ject description includes object id, status, book size,
last operation date, book name, file system mounting
point where book locates, full path, node ip address,
user name who command the operation.

Figure 2: Object component and operations

4.2 Operation Basis

In order to provide stable and different operations for
the ARCO system, several data descriptors have been
used to define objects. The data structure of bk-list is
a structure type. There are mainly three parts of fields
in the bk-list structure, the first is information that
can be queried and got from book object description
table, the second is information that can be queried

1A digital object can be a book or a film.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

66



and got from grid node description table, and the third
is information that can be queried and got from vol-
ume object description table. The function bk-list-init
does a joint query to several tables in the database, get
as many attributes as the metadata can provide. The
function bk-list-print is for printing the bk-list struc-
ture.

In the god-stdlib.h header file, we have defined
server host names, globus gass server port for
url-copy, globus-personal-gatekeeper port and login
name, ldap server query port, ldap search base, file
system mounting points in grid nodes, etc.

To describe the grid node, we use sv-list structure
type. The library storage can be composed of several
volumes. There can be several grid nodes in each vol-
ume. When a book is copied into the library storage
system, firstly according to the volume attribute of the
book, there are several nodes can the possible place
where book will be copied into. And in each of these
nodes, there can be several file systems mounted. In
each node, some file systems are only used for oper-
ation system, such as swap area, system installation
partition. The file system that can be used on the li-
brary storage will named in a special way, including a
special mode that will be recognized and be taken as a
possible candidate for storing the new book. Starting
from the volume attribute of the new book, the func-
tion sv-list-init firstly query the metadata database to
get the nodes information belong to this volume, so
the sv-list structure has fields to store the total num-
ber of available nodes, and a list of recorder for each
of the grid node. Then function sv-list-init will try to
query the node object description table to get some
detail information about each node, such as node ip
address. Next step, the function sv-list-init will send
ldap query to mds server of each grid node, parse the
query result and get detailed node information, such
as total number of mounted file system, file system
name, free space, then we will further recognize the
file systems that can be used for book storage, fill all
the detailed file system information into each node
field of sv-list structure.

4.3 Functions and Operations

In ARCO system, there are many operations, which
can be taken to an object that can be in a different
abstraction level. In general, the library as an object,
different users and user groups have different permis-
sion to take actions on it. The library is composed by
volumes, some of which are mirroring backup of oth-
ers. In each volume there are several nodes. Every
node has several file systems can be used.

The function god-update is a low level operation,
which copy a new book to a proper file system or
update an old book that is already in the system. In
this function, volume attribute can be got from bk-list,

then by using volume attribute, sv-list can be initial-
ized, and we can get the proper file system for stor-
ing the book. The book will be tarred and transferred
to remote node, and then untarred. The procedure
of taring, transferring and untarring are staged to the
grid system as a job, so the command can be send
from a server, and actual operation can take place be-
tween other two remote nodes. If the volume of the
new book has a mirror volume, then the same pro-
cedure will also take place to the mirror volume for
real time backup. After the work has done, book in-
formation will insert into the table of book object de-
scription. For the time being, the scheduling policy
of god-update is ”largest capacity first”, which means
we always choose the server that has largest storage
capacity. We can also change the scheduling policy
by using different calling parameters.

The function god-cp is also a low level operation,
which just simply copies a book between two remote
nodes. The realization of this function is a much sim-
ple version of function god-update. The function god-
cp is used for copying a book between different work-
ing areas.

The function god-rm is for remove a book in a vol-
ume. In this function, we first find which node the
book locates in, then move the book to a temp delete
directory, and update the book status as deleted in
book description table. All of the procedures are sub-
mitted as remote jobs to grid system and take place in
remote nodes.

The function god-rc recovers a removed book in a
remote node. This function does reverse operation as
the function god-rm.

To every action, when the operation has finished,
the operation execution information (book name, size,
time costing in different procession stage, etc.) will be
recorded into the job information statistic database.
This is done by the statistic module, which collect
time benchmarks in different places of procession and
update the statistic database.

The module func-job-submit and url-copy provide
the programming interface to the globus[5-3][5-4]
fundamental service. The url-copy provides two dif-
ferent interfaces for remote file transfer and copy, re-
spectively for globus version 2.0 and globus version
2.2. The func-job-submit receives globus-personal-
gatekeeper port and login name, and job descrip-
tion rsl language sentence as the parameters. In our
prototype, all the operations that take place on re-
mote server are customized and submitted from local
server. The rsl description sentence defines job de-
tails, such as the name of executable, parameters, ex-
ecution environment demand, stdout and stderr, etc.

One of the project objectives is to provide the sys-
tem with scalability, so at any time, there are the pos-
sibility of adding in some new servers into the system
or shutting down and removing some servers from the

ARCO: MOVING DIGITAL LIBRARY STORAGE TO GRID COMPUTING

67



system. The function god-shutdown is a function for
physically take a node out off the system. When a
node is to be shutdown and taken out off the sys-
tem, all the books located in this node need to be
reloaded to other nodes, to guarantee the data inte-
gration. There are two cases, one is the volume has a
mirror, another is the volume don’t have any mirror.
In the first situation, books in this node can be copied
from the mirror volume, so the node can be shutdown
at once. In the second case we need firstly to redis-
tribute all books in this node to other nodes in the
same volume. The realization of the god-shutdown
utilizes the god-update and god-cp basic operations.

The function god-synch is for check the data inte-
gration between a volume and its mirror. It tries to
find any difference between the two volumes and take
proper operation to recover the storage.

5 EXPERIMENT AND RESULTS

In this phase of the prototype the work has not evolved
into network and processing optimization. Never-
theless, it is interesting to present some benchmarks
with process phases. This benchmarks were also used
to verify Grid applicability using Trezentos-Oliveira
model (Trezentos and Oliveira, 2003).

Table 5-1 depicts the performance statistic result
with different book size.

In our experiment, the largest book is about 660
MB. The table presents in the first column is the book
size in Kbytes; the second column is the time used for
query free space, this time cost is a constant value.
The free space query has done by send ldap query to
ldap server port in each server. For the time being, our
prototype has any one node act as book input point,
it means books will be copied from this local server
toward distributed multi-servers. The reason about
why we provide dynamic free space capacity query is
for the ability of our prototype expanding into multi-
servers input, and copy toward multi-servers. From
the trend in figure 3, we can clearly know that the time
cost of tar process is perfect linear, correspondent to
different book size. The time cost item of url copy and
all, are nearly linear relation relative to the book size.
In ideal environment, the url copy time should be lin-
ear relation with the book size. In our result, the url
copy time costing coarse is introduced by the network
delay, operation system, globus system work load and
scheduling policy, etc. The feature of time cost of un-
tar is something like a step function, within a sphere
of book size, it keeps stable, out of the sphere, it steps
down or up a class.

Table 5-1 Book Size and Process Benchmark

Bk Size(kb) FS Query Tar Url CP All
132 4 0 0 4
132 2 0 0 2
6156 3 1 6 10
8652 3 2 15 20

79360 3 16 96 115
101272 2 20 102 124
126676 2 25 112 139
131564 4 28 138 170
192000 2 41 296 339
295952 2 62 244 308
447652 2 92 736 830
660372 2 137 830 969

Note: unit of book size is in Kbytes, unit of
benchmark is in second

Figure 3: Process benchmarks

6 RELATED WORK

Indiana University’s Distributed Storage Services
Group (DSSG)(University, 2000) has provided a
scalable, network accessible, standards-based stor-
age infrastructure. This is accomplished via the
Distributed Computing Environment Distributed File
System (DCE DFS) to deliver a ubiquitous common
file system to IU researchers and with the Massive
Data Storage Service (MDSS, based on the High
Performance Storage System or HPSS) to store vast
amounts of archival or near line data on a hierar-
chy of storage media. These are augmented by the
Andrew File System (AFS) for remote collabora-
tion and data sharing. In September 2000, working
with IBM, Indiana University instituted into produc-
tion the world’s first geographically distributed High
Performance Storage System (HPSS). With hardware
and software components distributed across two In-
diana University campuses (located at Bloomington
and Indianapolis, some 50 miles apart), users are
able to read or write data locally. In DCE DFS sys-
tem (Schroeder et al., 1999) , IBM 3590E Magstar
tape drive and IBM H70 HPSS Tape Mover are used

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

68



to provide very large amount of storage capacity in
types (total capacity of the tape library is nearly 1500
tapes).

However, with the rapidly progress in hardware,
now the 100 Giga-bytes hard-disk become relatively
cheaper, and the retrieving time of data resided on
hard disk is quicker than tapes. The distributed
server clusters composed of cheap brand-less ordinary
performance computer with large capacity of hard-
disk storage ability become possible for our demand.
The remaining core technology point is how to auto-
matically distribute data to geographically dispersed
servers. The globus fundamental toolkit gives us vi-
able solutions. Combined with globus job adminis-
trating and staging interface, we have developed our
distributed storage prototype for digital library data
storage system.

7 CONCLUSION

The first phase of ARCO system implementation
proved that the architecture is efficient for large
amounts of data. The management framework also is
becoming very powerful for maintenance operations.
Globus/Grid and commodity components as key com-
ponents assured a very good price / performance com-
promise.

Nevertheless, the ARCO subsystem need to be fur-
ther developed and enhanced. Future work will be
developed in the optimization of ARCO transfer func-
tions and storage process.

The development of the BND presents a unique
class of challenges. The ambitious vision is bounded
by the limited resources that BN can reserve for this
purpose, which requires technical solutions with great
flexibility, to be developed in an incremental process.
In this context it was decided to give special attention
to open and scalable technology, for the services and
also for the storage.

The price of the storage technology has been drop-
ping in an amazing rate. However, the prices of com-
plete commercial storage solutions for libraries have
been not following this trend in the same speed. Top
market companies still price their products too high,
especially when we compare them with the prices of
the original hardware components and the expected
software development.

Also, commercial companies have been too slow
in adopting innovative emerging technology for dig-
ital libraries. After realizing this, it was decided to
build a new specific framework for BND, based on
open technology, new models for partnerships and al-
liances, and also internal developments.

At the services and contents level, the solution de-
scribed in this paper will be complemented with other

open source technology and community based solu-
tions, such as the FEDORA(FEDORA, 2003) frame-
work for middleware services and the METS format
(METS, 2003) for the structural metadata.

REFERENCES

FEDORA (2003). Flexible extensible digital object and
repository architecture. http://www.fedora.info/.

Fitzgerald, S., Foster, I., Kesselman, C., von Laszewski, G.,
Smith, W., and Tuecke, S. (1997). A Directory Service
for Configuring High-Performance Distributed Com-
putations. In Proceedings of the 6th IEEE Symposium
on High-Performance Distributed Computing, pages
365–375.

Foster, I. (2001). The anatomy of the Grid: Enabling scal-
able virtual organizations. Lecture Notes in Computer
Science, 2150:1–??

Foster, I., Geisler, J., Nickless, W., Smith, W., and Tuecke,
S. (1997). Software infrastructure for the i-way
high performance distributed computing experiment.
Proc. 5th IEEE Symposium on High Performance Dis-
tributed ComputingSoftware Infrastructure for the I-
WAY High Performance Distributed Computing Ex-
periment.

Foster, I., Kesselman, C., Nick, J., and Tuecke, S. (2002).
The physiology of the grid: An open grid services ar-
chitecture for distributed systems integration.

Jos Guimares, P. T. (2001). Spino: A distributed architec-
ture for massive text storage. ICEIS, 1:244–248.

METS (2003). Mets. metadata encoding and transmission
standard. http://www.loc.gov/standards/mets/.

Open Grid Services Infrastructure (OGSI), v. . (2003).
Gwd-r (draft-ggf-ogsi- gridservice-23).

Schroeder, W., Marciano, R., Lopez, J., Gleicher, M.,
Kremenek, G., Baru, C. K., and Moore, R. (1999).
Analysis of HPSS performance based on per-file
transfer logs. In IEEE Symposium on Mass Storage
Systems, pages 103–115.

Trezentos, P. and Oliveira, A. (2003). Metrics for grid ap-
plicability: a distributed elliptic curve platform assess-
ment. Proceedings of the Fifth International Confer-
ence On Parallel Processing And Applied Mathemat-
ics, to be included in Lecture Notes in Computer Sci-
ence, Springer-Verlag.

University, I. (2000). Distributed storage services group
(dssg), http://www.indiana.edu/ dssg/.

ARCO: MOVING DIGITAL LIBRARY STORAGE TO GRID COMPUTING

69


