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Abstract. Several authors have theoretically determined distribution-free bounds 
on sample complexity. Formulas based on several learning paradigms have been 
presented. However, little is known on how these formulas perform and com-
pare with each other in practice. To our knowledge, controlled experimental re-
sults using these formulas, and comparing of their behavior, have not so far been 
presented. The present paper represents a contribution to filling up this gap, 
providing experimentally controlled results on how simple perceptrons trained 
by gradient descent or by the support vector approach comply with these 
bounds in practice. 

1   Introduction 

Sample complexity formulas based on statistical learning theory and the probably 
approximately correct (PAC) learning paradigm can be found in [2], [3], [4]. These for-
mulas assume a worst-case setting of the learning task. Other authors [6], on the con-
trary, presented a formula adequate to an average-learning setting. We are interested 
in assessing the quality of these formulas when using supervised classification with 
neural networks, based on the empirical error minimization (ERM) principle. 

We thus assume that our NN represents a mapping φ: X → T of an object space, X 
(X⊆ℜd), into a target space T. For simplicity reasons, we only consider dichotomic 
decisions with T = {0, 1}. We denote by φ(x,w) the NN output using some weight 
vector w∈W, of a weight vector space W. 

The NN learning task consists of the minimization of a risk functional: 
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for the dichotomic data classification task, where z = (x,t) are data pairs and F(z) is the 
data distribution. R(w) is then the NN probability of error, Pe(w). 

In practice, the NN is designed so to minimize the empirical error, i.e., based on a 
training set Dn = {zi = (xi, ti): xi∈X, ti∈T, i = 1,2,…,n}, we pick up the mapping (by suit-
able NN weight adjustment) that minimizes 
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The minimum empirical risk occurs for a weight vector wn. )(emp nwR  is then the resub-
stitution estimate of the probability of error, eP̂ , of the NN classifier. 

Statistical Learning Theory [9] shows that the necessary and sufficient condition 
for the consistency of the ERM principle ,, independently of the probability distribution 
(independently of the problem to be solved), is:  
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where G(n), called growth function, can be shown to either satisfy  

 
G(n) = n ln2    if n ≤ h 

 
or to be bounded by: 
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The parameter h, called the Vapnik-Chervonenkis dimension (or VC-dimension for 

short) is the maximum number of vectors z1,…, zh, which can be separated in all 2h pos-
sible ways using the family of functions φ(z) implemented by the neural network (shat-
tered by that family). As an examp le, consider a single perceptron with x ∈ ℜ2 that 
uses a step function as activation function. The perceptron implements a line in 2-
dimensional space. Therefore, the determination of h amounts to determining the 
maximum cardinality of a set of points that can be separated in all 2h possible ways by 
any line. In this simple case h = 3. For more complex situations there are no exact for-
mulas of h and one has to be content with bounding formulas. 

Let C be a class of possible dichotomies of the data inputs. The neural network at-
tempts to learn a dichotomy c ∈ C using a function from a family of functions Φ im-
plemented by the neural network. Using an appropriate algorithm, the neural network 
learns c ∈ C with an error probability (true error rate) ε (≡ Pe) with confidence δ. A 
theorem presented in [3] establishes the PAC-learnability1 of the class C only if its VC 

                                                                 
1 C is PAC-learnable by an algorithm using Dn and Φ , if for any data distribution and ∀ ε, δ, 0 < 
ε, δ  < 0.5 the algorithm is able to determine a function φ ∈ Φ , such that P(Pe(φ) ≤ ε) ≥ 1−δ, in 
polynomial time in 1/ε, 1/δ, n and size(c). (See [1], [5], [7]) 
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dimension, h, is finite. Moreover, it establishes the following sample complexity 
bounds: 

 
1. Upper bound: For 0 < ε  < 1 and sample size at least 
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any consistent algorithm is of PAC learning for C. 

 
2. Lower bound: For 0 < ε < ½  and sample size less than 
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no learning algorithm is of PAC learning for C. 

 
Fig. 1 illustrates these bounds for several values of the VC-dimension, h, and the 

dimensionality of the input space, d, when ε = 0.05 and δ = 0.01. Notice the large gap 
between lower and upper bound for small values of h. 

Another approach [6] consists on bounding the Average Generalization Error 
(AGE) of a learning machine, namely a MLP. This bound is obtained not in the context 
of PAC theory, but from hypothesis testing inequalities. As mentioned before, it is not 
a worst-case bound but an average-case bound. It has the following expression: 

n
dAGE

2
1+< α , (3)  

 
where α is the training error, d represents the number of adjustable parameters (for an 
MLP, the number of weights) and m is the number of training points. 

 

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

h

n

d=2

d=4
d=8

 

Fig. 1. Bounds of n for ε = 0.05 and δ = 0.01. 
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2   Experimental Setting 

In order to test the previous bounds we must use an experimental setting where we 
have perfect control on the value of h and on the value of the (true) probability of 
error. These conditions are satisfied for instance for the data distribution depicted in 
Fig. 2, consisting of uniformly distributed points (x2, x1) in [0, 1]2, linearly separated by 
the x2 = x1 straight line. 
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Fig. 2. Example of dataset used in the experiments. 

 
 

We then know that h = 3, and for any perceptron using a step function - thus, imple-
menting a straight line -, it is an easy task to determine the true error: just determine the 
areas corresponding to wrongly classified points (remember that the data distribution 
is uniform). 

 The exp eriments were performed as follows: a single 2-input-1-output perceptron 
with step activation function was trained on a random sample Dn ⊂ [0, 1]2 until achiev-
ing perfect separation on Dn. This experiment was repeated a certain number of times in 
order to obtain, for each n, the δ = 95% percentile of all computed probabilities of error. 

Finally, using formula (2) we are able, by a table look-up procedure, to determine the 
value of ε  achieving the lower bound of n. 

3   Results 

For each value of n = 10, 20, ..., 150 we generated 25 random sets, Dn. The (true) error 
average and upper 95% percentile for the gradient descent training were determined, 
as shown in Fig. 3: “Average experimental error” and “95% experimental error” curves. 
Fig. 3 also shows the “95% Theoretical error” predicted by formula (2) and the AGE 
bound. The theoretical error predicted by formula (1) is largely pessimistic, yielding 
large values of ε (≈ 1) for the represented interval of n. 

We repeated these same experiments for a support vector machine with a linear ker-
nel and the same basic architecture (SVM2:1). The results obtained are shown in Fig. 4. 
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Fig. 3. Error curves for the perceptron, with the AGE bound. 
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Fig. 3. Error curves for the SVM2:1. 

4   Discussion 

The results of the previous section show that the lower bound (2) represents a tight 
bound for the mentioned experiments. As a matter of fact, the “95% Experimental error” 
and the “95% Theoretical error” curves are very close to each other, namely for the 
larger values of n. The curves also illustrate the well-known O(1/ε) behavior for this 
learning process [1]. Comparing the SVM approach with the gradient descent ap-
proach we see that the first one has smoother convergence. This is also to be expected 
given the decrease of the VC-dimension for the SVM approach.   
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The AGE bound in Figure 5 is quite loose if compared with the bound from formula 
(2). It also exhibits the O(1/ε) behavior of the learning process shown by the other 
bound and the theoretic and measured error rates. So, although the bound from ex-
pression (2) is derived in a worst-case scenario, it is in fact tighter than the bound from 
expression (3). This may not be a fair comparison since expression (2) works for a 95% 
confidence interval whereas expression (3) should always be valid, hence its larger 
margin from the average experimental error curve. 

We are currently pursuing the experimental test of several sample complexity 
bounding formulas presented in the literature, using both artificial and real datasets of 
more complex nature. This raises two added difficulties: how to obtain good estimates 
of the VC-dimension for spaces of higher dimensionality than ℜ2 and using more com-
plex functions than the step function; how to obtain good estimates of the true error of 
a classifier. 
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