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Abstract: We consider the problem of building a pattern recognition classifier 

using a set of training samples. Traditionally, the classifier is constructed by using 
only the set1 of given training samples. But the quality of the classifier is poor when 
the size of the training sample is small. In this paper, we shall show that the quality 
of the classifier can be improved by utilizing artificially created training samples, 
where the latter are obtained by using various extensions of Efron’s bootstrap 
technique. Experimental results show that classifiers which incorporate some of the 
bootstrap algorithms, noticeably improve the performance of the resultant classifier.   

1 Introduction 

The question of how a good pattern classifier can be designed is a fundamental 
problem in pattern recognition. This is, typically, achieved by using the training sample 
(or set), and then designing the classifier by appropriately invoking either a parametric 
or a non-parametric method. It is well known, however, that the size of the training 
sample is crucial in designing a good classifier. In the case of parametric methods, if 
the size of the training sample is large, the corresponding parametric estimates 
converge, and so the classifier can be shown to converge to the one sought for. 
Similarly, in the non-parametric case, rules like the nearest-neighbour rule have small 
error only if the size of the training sample is large. Indeed, it is well known that the 1-
NN rule has an error which is less than twice the Bayes error, if the training sample 
size is arbitrarily large [DHS01]. Thus, it is universally accepted that the quality of the 
classifier is poor when the size of the training sample is small. 

In this paper, we shall show that the quality of the classifier can be improved by 
utilizing artificially created training samples, where the latter are obtained by invoking 
various extensions of Efron’s bootstrap technique [Ef79]. To render this study 
complete, we shall first propose various schemes by which the Bootstrap method can 
be adapted to this problem, and then test them for some “benchmark” data sets. 
Experimental results show that classifiers which incorporate some of the “non-local” 
bootstrap algorithms, noticeably improve the performance of the resultant classifier.  

This is the main thrust and contribution of this paper. We are not aware of any 
other study of this nature (apart from Hamamoto et al [HUT97]), in which Bootstrap 
methods are used to enhance the classifier design, when the training sample is 
extremely small. 
 

                                                           
1 Throughout this paper we shall refer to this set in the singular, namely as the “training sample”. 
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1.1 Classifier Design 

Despite the difference of the structures or the model of computation used, a 
classifier is traditionally constructed by using only the given training sample. However, 
Efron’s bootstrap technique provides a way to build a classifier by using an artificial 
training sample, which, in turn, is generated from the original one. The only reported 
work done in this context is by Hamamoto et al [HUT97] who first proposed bootstrap 
schemes to achieve this. The details of their work (necessarily brief) constitute the 
contents of Section 2. In Section 3, we introduce new pseudo-sample algorithms and 
present experimental results obtained by using these schemes in Section 4. 

1.2. Experimental Data Set 

The data set used for all the experiments in this paper is a set of randomly 
generated samples, which consists of training samples for seven classes. Each class has 
a 2-dimension normal distribution with covariance matrix ∑ = I, and a training sample 
size of only eight. The expectation vectors of the seven classes are listed in TABLE 1. 

TABLE 1 : Expectations of the classes used in our experiments 

CLASS A B C D E 
EXPECTATION (0.0, 0.0) (0.5, 0.0) (1.1, 0.0) (1.1, 0.7) (1.1, 1.5) 

CLASS F G    
EXPECTATION (2.0, 1.5) (3.0, 1.5)    

Only two classes are involved in each experiment: one is the class A, and the 
other is selected from the rest. Hence, there are, in total, six experimental pairs of 
classes, (A, B), (A, C), (A, D), (A, E), (A, F), and (A, G), where each successive pair, 
tests classes which are increasingly distant from the other. With each class pair, an 
experiment repeatedly does 200 trials of simulation for an algorithm. The results of the 
experiments given in this paper are the average statistics from the 200 trials.  

2. The Bootstrap Technique 

2.1. Concept of Bootstrap 

The bootstrap technique was first introduced by Efron in the late 1970’s [Ef79]. 
The basic strategy of bootstrap is based on resampling and simulation.  

Let X = {X1, X2, …, Xn} be an i.i.d. d-dimension sample from an unknown 
distribution F. We consider an arbitrary functional of F , θ  =  θ(F),  which for 
example, could be an expectation, a quantile, a variance, etc. The quantity θ is 
estimated by a functional of the empirical distribution F ,  =  θ( ), where ˆ θ̂ F̂

F̂  :  mass 
1
n

 at x1, x 2, …, xn, (2.1)

where n is the sample size, and {x1, x 2, …, xn} are the observed values of the sample 
{X1, X2, …, Xn}. Suppose now that we can randomly generate a sample based on the 
distribution, F .  Assuming the size of the sample generated is n, let this sample be : ˆ
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X* = {X 1
* , X 2

*
 , …, X n

* }. (2.2)

Thus we have an empirical distribution F * of the empirical distribution F , 
where, 

ˆ ˆ

F̂ *:   mass 
1
n

 at x 1
* , x 2

* , …, x n
* , (2.3)

and {x 1
* , x 2

* , …, x n
* } are the observed values of the sample {X 1

* , X 2
* , …, X n

* }, 

and a corresponding   *  =  θ( *) is the estimate of .  θ̂ F̂ θ̂
With the bootstrap technique, it is now possible to estimate the bias of the 

estimation of as: θ̂
Bias = EF [  - θ ] = EF [θ( ) - θ(F)]. θ̂ F̂ (2.4)

Using the bootstrap empirical distribution F *, the estimation of the bias (2.4) will be ˆ

Bias$  = E* [ *  - ]  = E *[θ( *) - θ( )]. θ̂ θ̂ F̂ F̂ (2.5)

The key issue of the bootstrap technique is to obtain an empirical distribution F * 

of the empirical distribution .  It is possible to generalize the sampling scheme for 
retrieving a bootstrap sample in the following way. 

ˆ

F̂

Let P* = (P , P *
2  ,…, P * )  be any probability vector on the n-dimensional 

simplex 

*
1 n

ϕn = {P* : P *
i ≥ 0, ∑i P

*
i  = 1}, (2.6)

called a resampling vector [Ef82].  For a sample X  = {X1, X2, …, Xn}, a re-weighted 
empirical probability distribution * is defined with a resampling vector PF̂ * as 

F̂ * : mass P  on x*
i i , i = 1, 2, …, n, (2.7)

where {x1, x2, …, xn} are the observed values of the sample {X1, X2, …, Xn}.  
Generally speaking, there are three schemes that are used to retrieve an empirical 

distribution * of the empirical distribution , F̂ F̂
 
Basic bootstrap 
This scheme was introduced by Efron [Ef79]. In Basic bootsrap, the resampling 

vector P* takes the form P *
i  = n / n, where n *

i  is the number of x*
i i appearing in a 

bootstrap sample. This means that P* follows a multinomial distribution, P* ~ 

n
1

Mult(n, P0), where P0 = (
n
1

,
n
1

 ,…, 
n
1

) is a n-dimensional vector. 

 
Bayesian bootstrap 
This scheme was introduced by Rubin [ST95]. The scheme first generates a 

sample (u1, u2, …, un-1) of U(0,1). It then uses the order statistics u(0)=0 ≤ u(1)≤ u(2)≤… 
≤u(n-1) ≤ u(n) =1 to define the resampling vector P*,  

P *
i  = u(i) - u(i-1),              i=1,2,…,n. (2.8)
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Random weighting method 
This scheme was introduced by Zhen [Zh87]. It also first generates a sample (u1, 

u2, …, un) of U(0,1). Instead of using the order statistics, this scheme defines the 
resampling vector P* as  

P *
i  = ui / ∑i ui,              i=1,2,…,n. (2.9)

2.2. SMIDAT Algorithm  

The SIMDAT algorithm is due to Taylor and Thompson [TT92]. The purpose of 
the SIMDAT algorithm is to provide a sampling scheme that could generate a pseudo-
data sample very close to that drawn from the kernel density function estimator of  

f̂ (x) = 
1
n
∑i K(x - Xi, Σi), (2.10)

where the Σi in K(•) is a locally estimated covariance matrix. Suppose {x1, x 2, …, xn} 
are the observed values of a sample {X1, X2, …, Xn}, the SIMDAT algorithm takes the 
following steps, 

1. Re-scale the sample data set {x1, x 2, …, xn} so that the marginal sample 
variances in each vector component are the same; 

2. For each xi, find the m nearest neighbors x(i,1), x(i,2), …, x(i,m) of xi (including xi 
itself) and calculate the mean x i of the m nearest neighbors; 

3. Randomly select a sample data xi from {x1, x 2, …, xn}; 
4. Retrieve a random sample {u1, u 2, …, um} from  

U(
m
1  - 2m

)1(3 −m , 
m
1  + 2m

)1(3 −m )  

and generate a pseudo-data sample using the weighted sum x *
i =∑j uj (x(i,j)-

x i); 
5. Repeat Step 4 m times to get m pseudo-data samples; 
6. Repeat Steps 3-5 N times to get a pseudo-sample of size m×N. 

3 Pseudo-sample Classifier Design 

3.1 Previous Work 

As mentioned above, the question addressed here is one of generating an artificial 
training sample set when applying the bootstrap technique to the problem of designing 
a pattern classifier. Therefore, the schemes provided by Hamamoto et al [HUT97] are 
for generating the synthetic training samples used to build the classifier.  

Assume that the number of classes is c, and that {x1,i, x 2,i, …, xni,i} is the training 
sample of the ith class, i = 1, 2,…, c. The steps of the algorithms given by Hamamoto et 
al are described below : 

1. Get the m nearest neighbors of each training pattern; 
2. For class i, randomly select a training pattern xj,i and suppose its m nearest 

neighbors are {y1, y2, …, ym}; 
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3. Retrieve a sample (u1, u 2, …, um) from U(0,1), and calculate the weighted 
sum ∑l ul yl/ ∑l ul to get a artificial training pattern; 

4. Repeat Step 2 and 3 ni times for class i; 
5. Repeat Steps 2 to 4 for each class. 
Some alternatives to this scheme were suggested by Hamamoto et al. One 

alternative suggested that instead of randomly selecting a training pattern in Step 2, we 
can just go though each training pattern in class i. A second alternative suggested that 
is that in Step 3, we can use the mean of a basic bootstrap sample from the m nearest 
neighbors of the training pattern, instead of their weighted sum. 

The comparison of the above algorithms was done in the paper by Hamamoto 
[HUT97] on the bases of the experiments with k-NN classifiers (k = 1, 3, 5). The 
experiments were designed to inspect the performances of the above algorithms in 
various situations, as well as the effect of dimensionality, training sample sizes, sizes 
of the nearest neighbors, and the distributions. The main conclusions of their work are: 

1) The algorithms outperform the conventional k-NN classifiers as well as the 
edited 1-NN classifier. 

2) The advantage of the algorithms comes from removing the outliers by 
smoothing the training patterns, e.g. using local means to replace a training pattern. 

3) The number of the nearest neighbors chosen has an effect on the result. An 
algorithm was introduced to optimize the selection of this size. 

The details of the experiments and the algorithm for optimizing the size of the 
nearest neighbor set can be found in [HUT97]. 

3.2 Mixed-sample Classifier Design 

We shall now show how we can specify alternate pseudo-classifier algorithms 
that use a pseudo-training sample to increase the accuracy of the classifier. It is 
generally accepted that the accuracy of a classifier increases with the cardinality of the 
training sample. Consequently, we believe that using the pseudo-training sample set to 
enlarge the training sample size is a good idea. The question that we face is one of 
knowing how to generate suitable pseudo-training patterns, and to devise a 
methodology by which we can blend them together with the original training samples 
to build the classifier. Such a classifier design scheme is referred to as a Mixed-sample 
classifier design because it uses the mixed training sample to construct the classifier. 
Generally, this kind of algorithm will build a classifier in two steps: first, it will 
generate a pseudo-training sample set; then it will build a classifier with all the training 
patterns using both the original, and the pseudo-training samples. 

The second step will be executed based on the classifier selected. This can 
involve any standard classifier design algorithm based on the given training patterns. 
We will thus focus on how to carry out the first step. Earlier, we presented algorithms 
to generate the pseudo-training sample. We shall now modify the existing algorithms 
and make them suitable for the purposes of the classifier design.  

Assume that there are c classes and that {x1,i, x 2,i, …, xni,i} is the training sample 
of the ith class, i = 1, 2,…, c. Below is a description of a typical algorithm for 
generating a pseudo-training sample for the classifier design. 

1. Get the m nearest neighbors of each training pattern; 
2. For class i, randomly select a training pattern xj,i and suppose its m nearest 
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neighbors are {y1, y2, …, ym}; 
3. Generate a pseudo-training pattern with the m nearest neighbors {y1, y2, …, 

ym} by applying any of the bootstrap algorithms given above, or the 
SIMDAT  algorithm given in Section 2.2; 

4. Repeat Step 2 and 3 ti times for class i; 
5. Repeat Steps 2 to 4 for each class. 
As discussed earlier, it is possible to have different weighting schemes for Step 3 

of our algorithm. In our experiments, we used three different schemes: the SIMDAT 
algorithm, the Bayesian bootstrap and the random weighting methods.  

There are other parameters that have to be assigned before we can invoke this 
algorithm. These are the number of the nearest neighbors used, and the size of the 
pseudo-training sample set of each class. As expected, the pseudo-training sample size 
affects the performance of the classifier. In our experiments, several pseudo-training 
sample sizes were used to ascertain their effect on the performance of a classifier. The 
size of the nearest neighbor set can also affect the performance of a classifier. Two 
different sizes of the nearest neighbor set were used in our experiments to study their 
effects.  

3.3 Simulation Results 

Experiments for the Mixed-sample algorithms were done with the Data Set I. 
Two classes, each with a training sample of size 8, were involved in each experiment. 
Sets of six different sizes, 4, 8, 12, 16, 20 and 24, were used to generate the pseudo-
training sample sets. With the size of the nearest neighbors, m = 3, three schemes 
namely, the SIMDAT algorithm, the Bayesian bootstrap and the random weighting 
method were used to generate the pseudo-training samples. To study the effect of the 
size of the nearest neighbors, the experiments were also carried out with the size of the 
nearest neighbors m = 8. Note that since the training sample size of a class is 8, a value 
of m = 8 means that a pseudo-training pattern is a combination of all the patterns in the 
training sample of a class. The Bayesian bootstrap and the random weighting method 
were used in the experiments with a value of m = 8.  To distinguish between the 
Bayesian bootstrap and the random weighting method used in two different sizes of the 
nearest neighbors, the previous ones are referred to as the Local-Bayesian bootstrap 
and the Local-random weighting method, while the latter are simply called the 
Bayesain bootstrap and the Random weighting method. After constructing a classifier 
with the mixed-sample, an independent testing sample of size 1,000 for each class was 
used to estimate the error rate of the 3-NN classifier. Figure 3.1 – 3.4 provide the 
results of the experiments on an average of 200 trials for some of the test class-pairs. 
Additional results are found in [Wu00]. 

The X-axis in each chart represents the pseudo-training sample size of a class, while 
the Y-axis represents the error rate of the classifier estimated by the independent 
testing sample. Each chart gives the results of the experiments done on one class pair. 
Although, different class pairs have a different error rate; the experimental results 
showed consistent tendencies, stated below. 

The SIMDAT algorithm, the Local-Bayesian bootstrap and the Local-random 
weighting method do not seem be advantageous. As opposed to these, the Bayesian 
bootstrap and random weighting methods improve the performance of the classifier. 

The effect of the pseudo-training sample increases with its size.  
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For instance, without a pseudo-training sample mixed into the original training 
sample for the classifier construction, the error rate of the 3-NN classifier would be 
33.37% for class pair (A, D). When the size of the pseudo-sample was increased to 16, 
which is twice the size of the training sample, the classifier’s error rates increased to 
34.41%, 33.82% and 34.15% for the Local-Bayesian Bootstrap, the Local-random 
weighting method and the SIMDAT algorithm respectively. However, with the same 
pseudo-training sample size, the error rates decreased to 31.08% and 31.14% for the 
Bayesain bootstrap and the random weighting methods. This is also true for class pair 
(A, E) whose experimental results can be found in [Wu00]. Without the pseudo-
training sample, the error rate of the 3-NN classifier is 23.54%. The error rates rose to 
24.14%, 23.59% and 25.14% for the Local-Bayesian Bootstrap, the Local-random 
weighting method and the SIMDAT algorithm respectively. At the same time, the error 
rates decreased to 21.61% and 21.70% for the Bayesain bootstrap and the random 
weighting method. 
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Figure 3.1 : Testing Error of the Mixed-Sample Classifier for the Class Pair (A, B) 

Figure 3.2 : Testing Error of the Mixed-Sample Classifier for the Class Pair (A, C) 
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Figure 3.3 : Testing Error of the Mixed-Sample Classifier for the Class Pair (A, D) 

The failure of the Local-Bayesian Bootstrap, the Local-random weighting method 
and the SIMDAT algorithm indicates that the size of the nearest neighbors should not 
be too small. Although, a combination of m-nearest neighbors “smooth” the training 
patterns in some way, it might still be an outlier if it is the combination of m-nearest 
neighbors of an outlier and the size, m, is small. The SIMDAT algorithm is the worst 
one of all the schemes for class pairs (A, E), (A, F) and (A, G). The cause for this is 
that the SIMDAT algorithm uses the uniform distribution U(.) to generate the 
weighting vectors, which allows for a greater chance for an outlier point to be 
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generated. 
The algorithms of the Bayesian bootstrap and the random weighting method 

performed very well as they use combinations of whole training patterns to produce the 
pseudo-training sample. This confirms that the size of the nearest neighbors should not 
be too small. The effect of the pseudo-training sample size is also significant. It can be 
seen from Figure 3.1 – 3.4 that, for all class pairs, the larger the pseudo-training 
sample’s size, the lower the error rate. The evidence show that the rate of decrease 
slows down when the pseudo-training sample’s size increases. Generally, it is enough 
to render the size of the pseudo-training sample to be 1.5 times (in our case m = 12) as 
that of the original training sample. The results of the experiments also showed that 
there is no significant performance difference between the Bayesian and the random 
weighting methods. 

3.4 Discussions and Conclusions 

In this paper, we have discussed the problem of designing a pattern when the size 
of the training sample is small. This was achieved by introducing artificially created 
samples. Previously, Hamamoto et al [HUT97] constructed a classifier by weighting 
the local means instead of the original training patterns. Their experiments 
demonstrated that their strategy performed favorably.  With the local means strategy, 
they also discussed how to find the optimized size of the nearest neighbors. 

What we have introduced is an alternative approach for constructing a classifier 
with the so-called mixed-samples. The motivation for using the mixed-sample 
classifier design was to have a larger sample size. This approach works when the 
pseudo-training patterns are obtained from the weighted averages of all the original 
training patterns together. However, it fails if the size of the nearest neighbors is small. 

Comparing the results of the mixed-sample classifier design to the previous 
results of Hamamoto et al’s work [HUT97], it may be seen that there are still 
interesting problems to be discussed. 

First, in terms of the mixed-sample classifier design, the designs suggested by 
Hamamoto et al [HUT97] can be referred to as pseudo-training sample designs, as they 
use only the pseudo-training samples – the local means – to construct a classifier. The 
difference between the mixed-sample and the pseudo-training sample classifier designs 
is that the latter only uses the pseudo-training sample to replace the original ones. 

Second, the local means function well in the pseudo-training sample classifier 
design because the local means remove the outliers by smoothing the patterns. 
However, they perform badly in the mixed-sample classifier design when the size of 
the nearest neighbors is small, as a bad local mean might be an extra outlier. On the 
other hand, a large size of the nearest neighbors, such as the whole set of the training 
sample, works well in the mixed-sample classifier design. 

Third, Hamamoto et al’s work proved that a large size for the set of nearest 
neighbors used does not imply that it yields the best results [HUT97]. That is why an 
algorithm to optimize the size of the nearest neighbors was suggested. Hence, it 
appears as if the problem of optimizing the size of the nearest neighbors for the mixed-
sample classifier design is unanswered. This could be a problem for further study. 
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Fourth, our experiments have proved that using a pseudo-training sample to 
enlarge the sample size is a good strategy. As no work has been done to compare the 
mixed-sample classifier design with the pseudo-training sample classifier design, it is 
difficult to say which one is better. 

Finally, from all of the above discussions, we confirm that the classifier design 
can be improved on by using a pseudo-training sample. The problem yet to be solved is 
one of knowing how to avoid the contamination of bad pseudo-patterns. There are two 
possible solutions to the problem: one is to exclude the outliers from the original 
training sample set before generating the pseudo-training samples. The other is to 
replace the outliers in the original training sample with their local means. Although it is 
believed that these two approaches are able to enhance the classifier design, they 
warrant further research. 
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