
Group Hierarchies with Constrained User Assignment
in Linux

Gail-Joon Ahn1 and Seng-Phil Hong2

1 University of North Carolina-Charlotte, Charlotte, NC, USA

2 LG-CNS, Seoul, Korea

Abstract. In this paper we investigate one aspect of RBAC administration con-
cerning assignment of users to roles. A user-role assignment model can also be
used for managing user-group assignment. We overview a constrained user-group
assignment model and describe its implementation in the Linux system. Rather
than set user and file rights individually for each and every user, the adminis-
trator can give rights to various groups, then place users within those groups in
Linux. Each user within a group inherits the rights associated with that group. We
describe an experiment to extend the Linux group mechanism to include group hi-
erarchies and decentralized user-group assignment can be implemented by means
of setgid programs.

1 INTRODUCTION

Role-based access control (RBAC) has received considerable attention as a promis-
ing alternative to traditional discretionary and mandatory access controls (see, for ex-
ample, [NO95,FCK95,GI96,SCFY96,JGAS01]). In RBAC permissions are associated
with roles, and users are made members of appropriate roles thereby acquiring the roles’
permissions. This greatly simplifies management of permissions. Roles are created for
the various job functions in an organization and users are assigned to roles based on
their responsibilities and qualifications. Users can be easily reassigned from one role
to another. Roles can be granted new permissions as new applications and systems are
incorporated, and permissions can be revoked from roles as needed.

Sandhu and Bhamidipati [SB97] introduced the URA97 model for decentralized
administration of user-role membership (URA97 stands for user-role assignment 1997).
They simply focused on user-role assignment without consideration of the important
constraints such as separation of duty (SOD) constraints. An example of SOD policy
may be “the patent submitted to a patent authorization agency can be reviewed only by a
member of its patent review committee.” This simple role-based access control may not
be adequate for expressing many business policies. An example of such policy is “none
of the applicants of the patent is eligible to review a patent, even though the applicant
is a patent review committee member.” These policies, also known as SOD constraints
should be dealt with user-role assignment.

Constraints are an important aspect of RBAC and are often regarded as one of the
principal motivations behind RBAC. Although the importance of constraints in RBAC

Popp G. (2004).
Towards a Systematic Development of Secure Systems.
In Proceedings of the 2nd International Workshop on Security in Information Systems, pages 13-22
DOI: 10.5220/0002654400130022
Copyright c© SciTePress



has been recognized for a long time, they have not received much attention. [AS00]
recently showed that role-based authorization constraints can be expressed by the spec-
ification language called RCL 2000. We use the concept of static separation of duty
(SSOD) borrowed from this work. The central contribution of this article is to describe
how we can achieve this kind of constraints during user-role assignment named con-
strained user-role assignment as an extension of URA97.

A user-role assignment model can also be used for managing user-group assignment
and therefore has applicability beyond RBAC. The notion of a role is similar to that of
a group, particularly when we focus on the issue of user-role or user-group member-
ship. For our purpose in this paper we can treat the concepts of roles and groups as
essentially identical. The difference between roles and groups was hotly debated at the
ACM Workshop [YCS95,San97]. There exists the consensus that a group is a named
collection of users (and possibly other groups). Groups serve as a convenient shorthand
notation for collections of users and that is the main motivation for introducing them.
Roles are similar to groups in that they can serve as a shorthand for collections of users,
but they go beyond groups in also serving as a shorthand for a collection of permissions.
Assigning users to roles or users to groups are therefore essentially the same function.

The rest of the paper is organized as follows. In section 2, we review the URA97
grant model. Section 3 discusses role-based authorization constraints. Section 4 de-
scribes constrained user-group assignment (CONUGA) including implementation de-
tails. Section 5 concludes the paper.

2 OVERVIEW OF URA97 MODEL

This section reviews URA97. We often use the term group as an identical notion of role.
Our description of URA97 is informal and intuitive. A formal statement of URA97 is
given in [SB97]. In this section we s imply give a quick overview of the grant model
which is dealing with granting a user membership in a group.

2.1 User-Group Grant Model

URA97 imposes restrictions on which users can be added to a group by whom. URA97
requires a hierarchy of groups (such as in Figure 1) and a hierarchy of administrative
groups (such as in Figure 2). The set of groups and administrative groups are required to
be disjoint. Senior groups are shown toward the top and junior ones toward the bottom.
Senior groups inherit permissions from junior groups. We writex > y to denotex is
senior toy with obvious extension tox ≥ y. The notion of prerequisite condition is a
key part of URA97. User-group assignment is authorized in URA97 by thecan-assign
relation.

Definition 1. A prerequisite conditionis a boolean expression using the usual∧ and
∨ operators on terms of the formx and x wherex is a regular role (i.e.,x ∈ R). A
prerequisite condition is evaluated for a useru by interpretingx to be true if(∃x′ ≥
x)(u, x′) ∈ UA andx to be true if(∀x′ ≥ x)(u, x′) 6∈ UA. For a given set of rolesR
let CPR denotes all possible prerequisite conditions that can be formed using the roles
in R.

14



(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

Fig. 1. An example group hierarchy

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Department Security Officer (DSO)

Senior Security Officer (SSO)

Fig. 2. An example administrative group hierarchy

Definition 2. The URA97 model controls user-role assignment by means of the relation
can-assign⊆ AR× CPR× 2R.

The meaning ofcan-assign(x, y, {a, b, c}) is that a member of the administrative
role x (or a member of an administrative role that is senior tox) can assign a user
whose current membership, or non-membership, in regular roles satisfies the prerequi-
site conditiony to be a member of regular rolesa, b or c.

2.1.1 Range Notation

URA97 also definescan-assignby identifying a range within the role hierarchy by
means of the familiar closed and open interval notation.

Definition 3. Role sets are specified in the URA97 model by the notation below

15



[x, y] = {r ∈ R | x ≥ r ∧ r ≥ y}
(x, y] = {r ∈ R | x > r ∧ r ≥ y}
[x, y) = {r ∈ R | x ≥ r ∧ r > y}
(x, y) = {r ∈ R | x > r ∧ r > y}

3 ROLE-BASED AUTHORIZATION CONSTRAINTS

Constraints are an important aspect of access control and are a powerful mechanism
for laying out higher level organizational policy. Consequently the specification of con-
straints needs to be considered. So far this issue has not received enough attention in the
area of role-based access control. [AS00] identified the major classes of constraints in
RBAC such asProhibition ConstraintsandObligation Constraints, includingCardinal-
ity Constraints. We briefly overview these identified classes of constraints in role-based
systems.

3.1 Prohibition Constraints

In organizations, we need to prevent a user from doing (or being) something that he is
not allowed to do (or be) based on organizational policy.Prohibition Constraintsare
constraints that forbid the RBAC component from doing (or being) something which
it is not allowed to do (or be). A common example of prohibition constraints is SOD.
SOD is a fundamental technique for preventing fraud and errors, known and practiced
long before the existence of computers. We can consider the following statement as
an example of this type of constraint: if a user is assigned to purchasing manager, he
cannot be assigned to accounts payable manager. This statement requires that the same
individual cannot be assigned to both roles which are declared mutually exclusive.

3.2 Obligation Constraints

We also need to force a user to do (or be) something that he is allowed to do (or be)
based on organizational policy. We derived another class of constraints from this mo-
tivation. Obligation Constraintsare constraints that force the RBAC component to do
(or be) something. The motivation of this constraints is from the simulation of lattice-
based access control in RBAC. There exists a constraint which requires that certain
roles should be simultaneously active in the same session. There is another constraint
which requires a user to have certain combinations of roles in user-role assignment. We
classify this kind of constraints as obligation constraints.

3.3 Cardinality Constraints

Another constraint is a numerical limitation for the number of users, roles, and sessions.
For example, only one person can fill the role of department chair; similarly, the number
of roles (sessions) an individual user can belong to (activate) could be constrained.

16



4 CASE STUDY: CONSTRAINTS AND USER-GROUP
ASSIGNMENT

Most of role-based constraints work have focused on separation of duty constraints
which is a foundational principle in computer security. As a security principle, SOD
is used to formulate multi-user control policies, requiring that two or more different
users be responsible for the completion of a transaction or set of related transactions.
The purpose of this principle is to minimize fraud by spreading the responsibility and
authority for an action or task over multiple users, thereby raising the risk involved in
committing a fraudulent act by requiring the involvement of more than one individual.
A frequently used example is the process of preparing and approving purchase orders.
If a single individual prepares and approves purchase orders, it is easy and tempting to
prepare and approve a false order and pocket the money. If different users must prepare
and approve orders, then committing fraud requires a conspiracy of at least two, which
significantly raises the risk of disclosure and capture.

Although separation of duty is easy to motivate and understand intuitively, so far
there is no formal basis for expressing this principle in computer security systems.
Several definitions of SOD have been given in the literature. We have the following
definition for interpreting SOD in role-based environments [AK01].

Role-Based separation of dutyensures SOD requirements in role-based sys-
tems by controlling membership in, activation of, and use of roles as well as
permission assignment.

Separation of duty constraints can be determined by the assignment of individuals to
roles at user-assignment time. Consider the case of initiating and authorizing payments.
The separation of duty constraints could require that no individual who can serve as
payment initiator could also serve as payment authorizer. This could be implemented
by ensuring that no one who can perform the initiator role could also be assigned to
the authorizer role. This static separation of duty can apply to the user-role assignment.
Therefore, we adapt the grant model in URA97. Useru can be explicitly assigned to
role ri where (u,ri) ∈ UA. Also useru can be implicitly assigned to rolerj where
(∃ri ¹ rj)[(u, rj) ∈ UA]. Let CR be a set of roles which are needed to be in static
SOD. CR is said to be a conflicting role set. The static SOD requirement is that the
same user cannot be assigned explicitly or implicitly to more than one role in CR.

We can enforce static SOD as we check each assignment task with a given CR. We
have AT-SET (assignment time set) table which includes SOD sets used to enforce SOD
requirements at assignment time. The example of AT-SET table with CR is described
below. This table tells us that rolepay initiator andpay authorizer are conflicting
each other so a user cannot be assigned to both roles.

SET-NAME ELEMENT
CR1 { pay initiator, payauthorizer}

Whenever System Security Officer (SSO) does assignment tasks, each assignment
task should be checked with AT-SET table and satisfy the constraints in the table. Fig-
ure 3 describes an algorithm which achieves desired behavior of CONUGA. There are

17



Grant Algorithm

Let invokerbe an initiator of user-role assignment and letassignDB have three attributes such
asassignDB.admin , assignDB.cond andassignDB.range to construct a table as shown in
Table 1.

invoker role set← Membership (invoker)
target role← role to be assigned
user← user to whichtarget role is assigned
assignDB← can-assignrelation table
CR set← AT SET table
grant Flag← false
assignrole set= φ

While (assignDB 6= EOF)
if invoker role setexists inassignDB.admin then
if target role exists inassignDB.range then
user role set← Membership (user);
if user role setexists inassignDB.cond then
grant Flag = true ;
return;

endif
endif

endif
End

if grant Flag = true then
assignrole set← JuniorList (target role);
if assignrole set∩ CR set= φ then

do the assignment of role inassignrole set;
else

exit;
endif

endif

ProcedureMembership (user)
Take all assigned roles to a user

ProcedureJuniorList (role)
Take all junior roles to a specified role in role-hierarchies

Fig. 3. Grant Algorithm in CONUGA

18



two procedures calledMembership and JuniorList . Membership procedure
allows us to have all assigned roles to a user andJuniorList procedure returns all
junior roles to a specified role by walking down the hierarchy. This grant algorithm
checkscan-assigntable and AT-SET table to enforce constrained user assignment.

4.1 Implementation Details

Every account in Linux contains a group membership list indicating which groups
the account belongs to. Users belonging to a group are explicitly enumerated in ei-
ther/etc/passwd (for the primary group) or/etc/group (for secondary groups).
Many commercial database management systems, such as Informix, Oracle and Sybase,
provide facilities for hierarchical groups (or roles). Commercial operating systems,
however, provide limited facilities at best for this purpose.

To maintain the group hierarchy we use the file/etc/grouphr to store the chil-
dren and parents of each group. The group hierarchy of Figure 1 is represented in
/etc/grouphr as shown in Table 1. The first column gives the group name, the
second column gives the (immediate) parent groups of that group, and the third column
gives the (immediate) children. The null symbol “−” means that the group has no par-
ent or child as the case may be. Using/etc/grouphr , we can find all seniors and
juniors for a group by respectively chasing the parents and children.

We say a user is anexplicit member of a group if the user is explicitly designated
as a member of the group. A user is animplicit member of a group if the user is an ex-
plicit member of some senior group. To simulate a group hierarchy we use information
about explicit and implicit membership in/etc/group . If Alice belongs explicitly or
implicitly to a group she will be added to that group’s member list in/etc/group .
However,/etc/group is not sufficient to distinguish the case where Alice is both an
explicit and implicit member of some group from the case where she is only an implicit
member of the group. For this purpose we introduce another file/etc/explicit
that keeps information about explicit membership only.

In order to enforce separation of duty constraints, we maintains/etc/at set
which includes conflicting roles. This table also can contain conflicting users and per-
missions. Table 2 illustrates how we can accommodate such sets to support constrained
user assignments.

There are two issues that need to be addressed in decentralized management of
group membership. Firstly we would like to control the groups that an administrative
group has authority over. Recall figures 1 and 2 which respectively show the regular and
administrative groups of our example. We would like to say, for example, that the PSO1
administrative group controls membership in project 1 groups, i.e., E1, PE1, QE1 and
PL1. Secondly, it is also important to control which users are eligible for membership
in these groups.

URA97 addresses these two issues respectively by means of agroup rangeand a
prerequisite groupor more generally aprerequisite condition. URA97 has acan assign
relation which we store in the file/etc/can assign . We put a colon between the
columns to indicate the boundary. Table 3 illustrates the general case of/etc/can assign
with prerequisite conditions. Let us consider the PSO1 rows. The first row authorizes
PSO1 to assign users with prerequisite group ED into E1. The second one authorizes

19



Table 1.The example group hierarchy of Figure 1

Group NameParent Group(s)Child Group(s)

DIR - PL1, PL2
PL1 DIR PE1, QE1
PL2 DIR PE2, QE2
PE1 PL1 E1
QE1 PL1 E1
PE2 PL2 E2
QE2 PL2 E2
E1 PE1, QE1 ED
E2 PE2, QE2 ED
ED E1, E2 E
E ED -

Table 2.The example AT-SET table:/etc/at set

Set Name Elements

conf-roles-1QE1, QE2
conf-roles-2PE1, PE2
conf-roles-3PL1, PL2

Table 3.Example of/etc/can assign with Prerequisite Conditions

Administrative Group Prerequisite Condition Group Range

PSO1: ED : [E1,E1]:
PSO1: ED∧ QE1: [PE1,PE1]:
PSO1: ED∧ PE1: [QE1,QE1]:
PSO1: PE1∧ QE1: [PL1,PL1]:
PSO2: ED: [E2,E2]:
PSO2: ED∧ QE2: [PE2,PE2]:
PSO2: ED∧ PE2: [QE2,QE2]:
PSO2: PE2∧ QE2: [PL2,PL2]:
DSO: ED: (ED,DIR):
SSO: E: [ED,ED]:
SSO: ED: (ED,DIR]:

PSO1 to assign users satisfying the prerequisite condition that they are members of ED
but not members of QE1 to PE1. Taken together the second and third rows authorize
PSO1 to put a user who is a member of ED into one but not both of PE1 and QE1.
The fourth row authorizes PSO1 to put a user who is a member of both PE1 and QE1
into PL1. Note that, a user could have become a member of both PE1 and QE1 only
by actions of a more powerful administrator than PSO1. The rest of table 3 is similarly
interpreted.

20



Table 4.The permission of reference files

PERMISSION OWNER Setgid GROUP FILE NAME

U:rw- G:rws W:--x root YES rbac assign
U:rw- G:rws W:--x root YES rbac weakrevoke
U:rw- G:rws W:--x root YES rbac strongrevoke
U:rw- G:rw- W:r-- root NO rbac /etc/group
U:rw- G:rw- W:r-- root NO rbac /etc/explicit
U:rw- G:rw- W:r-- root NO rbac /etc/can assign
U:rw- G:rw- W:r-- root NO rbac /etc/can revoke
U:rw- G:rw- W:r-- root NO rbac /etc/grouphr
U:rw- G:rw- W:r-- root NO rbac /etc/at set

Assignment of a user to a group in URA97 means explicit assignment. Implicit
assignment to junior groups happens as a consequence and side-effect of explicit as-
signment. In other words/etc/can assign applies only to explicit membership.

We use the setgid feature of Linux to enforce this behavior. The setgid (set group
ID or SGID) file access modes provide a way to grant users access to which they are
not otherwise entitled on a temporary, command level basis via a specified program.
When a file with SGID access is executed, the effective group ID of the process is
changed to the group of the file, acquiring that group’s access rights for duration of the
program contained in this file. Using setgid a user who is working as an administra-
tive group can read and write the reference files:/etc/group , /etc/explicit ,
/etc/grouphr , /etc/can assign and /etc/can revoke . Thereby we can
enforce desired behavior of URA97 with respect to different administrative groups.

To implement CONUGA in Linux we use several reference files introduced in the
previous sections and set their permission bits as shown in table 4. The three procedures
assign, weakrevoke and strongrevoke are setgid to the special grouprbac defined for
this purpose. These procedures can read and write the five reference files. We previously
described the structure of files/etc/group , /etc/explicit , /etc/grouphr ,
/etc/at set , /etc/can assign and /etc/can revoke . For simplicity all
these files in our implementation are owned by root. We assume that therbac group
has no members.

In our implementation a user invokes the procedure call to grant or revoke a group
from or to another user. The parameters specify which user is to be assigned to tar-
get group, or to be weakly or strongly revoked from targetgroup. This implementation
is convenient for administrative groups since they only need to define the group hier-
archy and the relations/etc/can assign and/etc/can revoke . These proce-
dures are called at the Linux command line prompt as follows.
[usage] assign username target group
[usage] weak revoke username target group
[usage] strong revoke username target group

21



5 CONCLUSION

In this paper we have described how to extend the Linux group mechanism supporting
constrained user group assignment model that is useful in managing group-based access
control. When a user is assigned to a group the system checks constraints including
prerequisite conditions and conflicting role set, andautomaticallyadds the user to all
junior groups to the group. We have extended the URA97 model and implemented it in
Linux by means of setgid programs. Our result indicates that (static) separation of duty
constraints can be determined by the assignment of individuals to groups at user-group
assignment time and this behavior can be achieved by accommodating sophisticated
access control model to some extent.

References

[AK01] Gail-Joon Ahn and Kwangjo Kim. CONUGA: Constrained User Group Assignment.
Journal of Network and Computer Applications, 24(2), April 2001.

[AS00] Gail-Joon Ahn and Ravi Sandhu. Role-based authorization constraints specification.
ACM Transactions on Information and System Security, 3(4):207–226, November
2000.

[FCK95] David Ferraiolo, Janet Cugini, and Richard Kuhn. Role-based access control (RBAC):
Features and motivations. InProceedings of 11th Annual Computer Security Applica-
tion Conference, pages 241–48, New Orleans, LA, December 11-15 1995.

[GI96] Luigi Guiri and Pietro Iglio. A formal model for role-based access control with con-
straints. InProceedings of IEEE Computer Security Foundations Workshop 9, pages
136–145, Kenmare, Ireland, June 1996.

[JGAS01] James Joshi, Arif Ghafoor, Walid G. Aref, and Eugene H. Spafford. Digital govern-
ment security infrastructure design challenges.IEEE Computer, 34(2):66–72, Febru-
ary 2001.

[NO95] Matunda Nyanchama and Sylvia Osborn. Access rights administration in role-based
security systems. In J. Biskup, M. Morgernstern, and C. Landwehr, editors,Database
Security VIII: Status and Prospects. North-Holland, 1995.

[San97] Ravi Sandhu. Roles versus groups. InProceedings of the 1st ACM Workshop on
Role-Based Access Control. ACM, 1997.

[SB97] Ravi Sandhu and Venkata Bhamidipati. The URA97 model for role-based administra-
tion of user-role assignment. In T. Y. Lin and Xiaolei Qian, editors,Database Security
XI: Status and Prospects. North-Holland, 1997.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-
based access control models.IEEE Computer, 29(2):38–47, February 1996.

[YCS95] Charles Youman, Ed Coyne, and Ravi Sandhu, editors.Proceedings of the 1st ACM
Workshop on Role-Based Access Control, Nov 31-Dec. 1, 1995. ACM, 1995.

22


