
OBJECT-PROCESS METHODOLOGY APPLIED TO AGENT
DESIGN

Zoheir Ezziane
College of Information Technology, Dubai University College, P.O. Box 14143, Dubai, United Arab Emirates

Keywords: Object-process methodology, Agent design.

Abstract: As computer systems become ever more complex, we need more powerful abstractions and metaphors to
explain their operations. System development shows that designing and building agent systems is a difficult
task, which is associated with building traditional distributed, concurrent systems. Understanding natural,
artificial, and social systems requires a well-founded, yet intuitive methodology that is capable of modeling
these complexities in a coherent, straightforward manner. Object-Process Methodology (OPM) is a system
development and specification approach that combines the major system aspects (function, structure, and
behavior), into an integrated single model. This paper will provide a paradigm for designing agent systems
using the object-process methodology. It aims to identify design concepts, and to indicate how they interact
with each other.

1 INTRODUCTION

Systems and products are becoming increasingly
complicated. Technology has been so pervasive that
even commonly used products feature high
computational power, embedded within increasingly
miniature, precise, and involved hardware. Systems
of an infrastructure nature, such as the Internet and
digital economy, are orders of magnitude more
complex than products individuals normally use.
 Understanding natural, artificial, and social
systems requires a well-founded, yet intuitive
methodology that is capable of modeling these
complexities in a coherent, straightforward manner.
 Artificial systems require development and
support efforts throughout their entire lifecycle.
Systematic specification, analysis, design, and
implementation of new systems and products are
becoming even more challenging and demanding, as
contradicting requirements of shorter time-to-
market, rising quality, and lower cost, are on the
rise. These trends call for a comprehensive
methodology, capable of tackling the mounting
challenges that the evolution of new systems poses.
 OPM is a system development and specification
approach that combines the major system aspects
(function, structure, and behavior), into an integrated
single model. This methodology is used to design
multiagent systems.

 Multiagent systems (MAS) are concerned with
the behavior of a collection of possibly pre-existing
autonomous agents aiming at solving a given
problem. A MAS can be defined as a loosely
coupled network of problem solvers that work
together to solve problems that are beyond the
individual capabilities or knowledge of each solver
(Jennings et al., 1998). These problem solvers
(agents) are autonomous and may be heterogeneous
in nature.
 This paper will provide a paradigm for designing
agent systems using the object-process
methodology. It aims to identify design concepts,
and to indicate how they interact with each other.

2 BACKGROUND

2.1 Object-Process Methodology

OPM takes a fresh look at modeling complex
systems that comprise humans, physical objects, and
information (Dori, 2002). OPM is a formal paradigm
to systems development, lifecycle support, and
evolution. OPM was applied in such diverse areas as
computer integrated manufacturing (Dori, 1996),
image understanding (Dori, 1996), modeling
research and development environments
(Meyersdorf et al., 1997), document analysis and

455
Ezziane Z. (2004).
OBJECT-PROCESS METHODOLOGY APPLIED TO AGENT DESIGN.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 455-462
DOI: 10.5220/0002657604550462
Copyright c© SciTePress

recognition (Wenyin, 1998), algorithm specification
(Wenyin et al., 1999), software engineering (Tomlin
et al., 1998), modeling electronic commerce
transactions (Dori, 2001), and web applications
(Reinhartz-Berger et al., 2002).
 Natural and artificial systems alike exhibit
three major aspects: function, structure, and
behavior. In the case of artificial systems, OPM
provides a framework for the entire system’s
lifecycle, from the early stages of requirement
elicitation and analysis, through further development
and deployment, all the way to termination and
initiation of a new generation (Dori, 2002).
 OPM combines formal yet simple graphics
with natural language sentences to express the
function, structure, and behavior of systems in an
integrated, single model. Objects and processes are
the two main building blocks that OPM requires to
construct models. A third OPM entity is state, which
is a situation at which an object can be and therefore
a notch below object. Objects, processes, and states
are the only bricks involved in building systems. The

links connecting these three entities act as the mortar
that holds them together (Dori, 2002).
 OPM is an integrated approach to the study and
the development of systems in general and
information systems in particular. The basic premise
of OPM is that objects and processes are two types
of equally important classes of things, which
together describe the structure, function, and
behavior of systems in a single framework. OPM
unifies the system specification, design, and
implementation within one frame of reference, using
a diagramming tool (Object-Process Diagram), and a
corresponding, English-like language (Object-
Process Language) (Reinhartz-Berger et al., 2002).

 OPM has two scaling mechanisms:
unfolding/folding and zooming-in/zooming-out. The
unfolding/folding mechanism uses structural
relations for detailing/abstracting the structural parts
of a thing. For example, in figure 1, the process
Traveling is unfolded to expose its parts, processes
Destination Selecting and Budgeting Planning.

 The zooming mechanism exposes/hides the
inner details of a thing within its frame. In figure 2,
the process Traveling is zoomed-in. This way OPM
facilitates focusing on a particular subset of things
(object and/or processes), elaborating on their details
by drilling into them to any desired level of detail.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

456

Agent

Environment

Percepts Actions

Figure 3: Agent interacts with its environment

2.2 Multiagent Systems

MAS provide a paradigm for analyzing, designing,
and implementing software systems. The agent-
based view offers a powerful repertoire of tools that
have the potential to considerably improve the way
in which people design and implement many types
of applications. Agents are being used in an
increasingly wide variety of applications, ranging
from small applications such as personalized email
filters (Abushar et al., 2003) to large, complex
mission critical systems such as Internet trading
(Chavez et al., 1996), (Stone et al., 2001), (Chan,
2001), (Das, 2003) and air-traffic control
(Cammarata, 1983), and (Tomlin, 1998). Kasbah is
an example of Internet trading, in which it
establishes a virtual marketplace on the Web where
users create autonomous agents to buy and sell
goods on their behalf (Chavez et al., 1996). In
addition to providing solutions to meet real-world
needs, they demonstrate to be a useful technology.
 An agent is a computer system that is situated
in some environment, and that is capable of
autonomous action in this environment in order to
meet its design objectives (see figure 3). An agent
has ability to perceive, reason, act, and
communicate. Furthermore, an agent has explicitly
knowledge and methods for operating on or drawing
inferences from its knowledge. The key problem
facing an agent is that of deciding which action it
should perform in order to best satisfy its design
objectives (Wooldridge, 2002)
 Agents operate and exist in some environment,
which is both computational and physical. The
environment might be open or closed, and it might
or might not contain other agents. Although there are
situations where an agent can operate usefully by it
self, the increasing interconnection and networking
of computers is making such situations rare, and
therefore interaction among agents is the most
common situation (Weiss, 2000).
 Much of the traditional AI has been concerned
with how an agent can be constructed to function

intelligently, with an internal reasoning and control.
However, intelligent systems do not function in
isolation. They are part of the environment in which
they operate, and the environment contains other
intelligent systems. Consequently, those systems
form a society of agents.
 Information environments are too large,
complex, and open to be managed centrally.
Computational intelligence must be embedded in
such environments to provide distributed control. A
problem for a multiagent system is how it can
maintain global coherence without explicit global
control. Hence, agents must be adaptive (they should
be able to explore and learn their environment), and
social (they should interact and coordinate to
achieve their own goals, and the goals of their
society). One way of achieving coherence is through
social commitments.
 The nature of the environment is highly
dependable on many properties. The environment
properties are classified as follows: Accessible
versus inaccessible; Deterministic versus non-
deterministic; Static versus dynamic; Discrete versus
continuous (Russel, 2003). The most complex class
of environments (i.e., open) is those that are
inaccessible, non-deterministic, dynamic, and
continuous. Environmental properties have a role in
determining the complexity of the agent design
process, but a second property such as the nature of
interaction between agent and environment is also
important to consider.
 Details about how agent communicate,
cooperate, and negotiate are available in the
literature (Wenyin et al., 1998), (Wenyin et al.,
1999), (Weiss, 2000), (Russel, 2003), and (Jennings
et al., 1998).

2.3 Current Design Methods

Object-oriented (OO) design is a general paradigm
for developing systems that focuses on the objects
that build the system. The strength of OO techniques
is in modeling the structural aspects of a system.

OBJECT-PROCESS METHODOLOGY APPLIED TO AGENT DESIGN

457

However, they are far less suitable for representing
the dynamic and functional aspects of a system.
 Current OO techniques suffer from three major
inter-related problems: the encapsulation, the
complexity management, and the model multiplicity
problem. They do not have a mechanism for
specifying stand-alone processes, which are not
owned by a certain object and counter the
encapsulation principle. Moreover, the encapsulation
principle eliminates the dynamic aspect of the
system. Thus, while being a useful programming
convention, this unnecessary encapsulation
constraint has been a source of endless confusion.
 The complexity management problem is
related to the way OO methods deal with the
complexity that emerged by splitting systems into
various models such as structure (the object/class
model) and dynamics (Statecharts). Therefore, when
the complexity of the system increases, no tools will
be available to describe the entire system.
 The inadequacy of accommodating the
functional and dynamics system aspects, which OO
methods suffer from, has contributed to the model
multiplicity problem (Peleg, 2000) and (Lovitz,
1998). The most common object-oriented modeling
language is UML (OMG, 2003), (Agarwal et al.,
2003), and (Medvidovic et al., 2002). The UML
standard requires nine different models, including
class diagrams, use case diagram, object message
diagram, state diagram, module diagram, and
platform diagram. The model multiplicity problem
refers to the need to comprehend a variety of models
of the same system and synchronize them. Hence,

the need to specify a system with just one model will
be definitely better than a multi-model one (Peleg,
2000).

3 AGENT SYSTEM DESIGN
USING OBJECT-PROCESS
METHODOLOGY

In this paper, we present an application of OPM to
modeling the basic multiagent design as a case to
demonstrate OPM’s semantics. However, OPM is
domain independent, and has been applied to many
areas. The feature of OPM is that it depends on how
objects and processes are defined. This characteristic
of OPM makes it suitable for developing systems in
a large variety of domains.
 Viewing agents from an abstract level prepares
the ground for a smooth analysis. However, it does
not necessarily lead to their construction. This
abstraction is a useful software engineering
abstraction (e.g., abstract data types). Hence, OPM
is used to refine the model of agents, by breaking it
down into sub-systems in exactly the way that one
does in standard software engineering. As the view
of agents is being refined, design options related to
the agent’s subsystem would become transparent.
Figure 4 describes the OPM design for a multiagent
system, indicating the characteristics of an agent and
the way it interacts with its environment.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

458

Mobility indicates whether the agent has any ability
to move from one site to another. One of the
characteristics of social agents is that participating
agents ought to have some sort of rationality, in
order to build a coherent society. Adaptation means
whether the agent should adapt itself to how the
environment evolves

3.1 Simple Reflex Agents

One of the simplest classes of agents is the simple
reflex agent, also called purely reactive agents. They
simply respond directly to their environment. These
agents select actions based on the current percept
ignoring the rest of their percept history. They base
their decision-making entirely on the present.
 A lamp agent is an example of a simple reflex

agent. Assume that the lamp’s environment can be in
one of the two states (either on, or off). Figure 5
depicts this kind of agents.

3.2 State-based Reflex Agents

The model for simple reflex agents helps designing
agents with state. That is, the agent should keep
track of an internal state that depends on the percept
history. These agents must have some internal data
structure, which is used to update the internal state
information. Thus, the internal state of any agent
needs to record how the world evolves
independently of the agent, and how the agent’s
actions do affect the environment. Figure 6 depicts
an OPM design for sate-based reflex agents.

OBJECT-PROCESS METHODOLOGY APPLIED TO AGENT DESIGN

459

 A good example of purely reactive agents is an
internet personal assistant, which can be used to help
the user by storing the preferred links, advice the
user to visit a certain site based on the user’s profile,
etc.

3.3 Utility-based Agents

A utility function is needed in order to map a state
(or a sequence of states) onto a real number, which
describes the associated degree of happiness. This
utility function is used to specify the appropriate
tradeoff that could result from certain action. Figure
7 depicts an OPM design for utility-based agents.

 Game assistant is an example of a utility-based
agent. It suggests to the user to make certain moves,
using a certain strategy that either minimize
penalties or increase points.

3.4 Negotiations and Reaching
Agreements

Cooperation is a concept in the human world. Often
when a group of people work together to solve a
problem or to achieve an objective, not only they
can increase productivity and efficiency, but also
they can solve a problem that cannot be solved by an
individual alone.
 Communication can enable the agents to
coordinate their actions and behavior, which results
in a more coherent society. The desired property of
coordination avoids resource contention, livelock,
and deadlock. Typically, in order to reach a
successful cooperation, each agent must maintain a
kind of a model of how other agents evolve in the
environment.
 As electronic commerce (e-commerce) is
rapidly becoming a reality, the need for negotiating
methods that take into consideration the
complexities of the real world environment, such as
incomplete data and negotiation deadline.
 A frequent form of interaction that occurs

among agents with different goals is termed
negotiation. A negotiation is a process by which a
joint decision is reached by two or more agents,
where each one is trying to reach an individual goal.
In this case, the agents need to communicate their
actual positions, which might conflict, and then try
to make an agreement through concessions or
searching for other options.
 One of the most important issues in both
conventional and electronic trading is for sellers and
buyers to reach a consensus on pricing and other
terms of transactions. The task of negotiation and
reaching an agreement can often be difficult and
time consuming. Thus, it is crucial to use a
transparent design tool to design and engineer a
society of trading agents that help users negotiate
terms of business transactions.

3.4.1 Auctions

Recently, online auctions rapidly achieved enormous
popularity in e-commerce. Numerous online auction
houses have been already established on the web,
such as Amazon, BargainFinder and eBay. Hence,
the design and development of a multiagent system
will provide some opportunities to improve auction
performance.
 Agents can be used to compare products of
several producers and help to find the best bargain,

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

460

but they can also be used to perform the actual
transaction. The interest is focused on the latter case
because it represents an actual multiagent e-
commerce system. If a direct trading procedure is
followed, agents of producers and consumers should
negotiate the deal and inform their users. In case of a
very simple negotiation, the transaction can be done
without the use of an institution. For example, an
agent can buy a book at Amazon.com, without
requiring an institution because the transaction is
simple.
 However, the transaction can be performed in
other cases where a certain institution is needed. The
institution determines the way that the parties can
conduct the transaction and provides an
infrastructure to do it. A good example is Kasbah, a
market place where agents can buy and sell goods.
Kasbah gives a predefined structure for specifying
the product and also facilitates the negotiation
process. Kasbah most closely resembles an online
classified ad system. When a user wants to sell
something (e.g., used book) he/she registers the
object for sale with the Kasbah server via a
computer interface, buyers then go to Kasbah to look
for something to purchase. But Kasbah is able to use
software agents to negotiate a sale.
 In the case of indirect trading, there exists a
natural institution (e.g., auction) in the form of the
broker that mediates in the transaction. The auction
determines the rules of encounters, such as how
products can be delivered at auction level as well as
how products can be bought. Despite the auction’s
simplicity, they present a powerful tool that
automated agents can use for allocating goods, tasks,
and resources.
 An auction takes place between an agent
(auctioneer) and a set of agents (bidders). The
objective of the auction is for the auctioneer to
allocate the good to one of the bidders. Usually, the

auctioneer would like to maximize the price at
which the good is allocated, while the bidders want
to minimize it. Achieving the auctioneer’s goal is
realized through some rules of encounter. Figure 8
shows an attempt to design an auction multiagent
system.
 Winner determination is an auction protocol.
The first-price is used to allocate the good to the
agent that bids the most, while the second-price is to
allocate the good to the second highest bid. The
other auction protocol specifies on how bids are
announced. If the bids are known and made
available to all agents in the system, then the auction
is open-cry, otherwise it is sealed-bid.

4 CONCLUSION

This paper emphasizes on a different framework
(OPM) in designing agents. OPM is able to represent
all the important interaction in a system, and is
widely used in various fields. This approach
includes a clear and concise set of symbols that form
a language enabling the expression of the system’s
building blocks and how they relate to each other.
Various attempts in designing agent systems were
approached; a comparison of OPM with UML was
discussed. It was shown how OPM is more effective
than the current UML. As an extension to this
research, it would be interesting to investigate the
compliance of OPM in designing agents with FIPA
standards. Many major IT and telecommunications
companies had become involved in the FIPA trend,
and a set of prototypical standards had been
developed. Hence a new methodology in designing
agents such as the one discussed here in this paper
will be more valuable when is compliant with FIPA
specifications.
 Future work could also emphasize on a detailed

OBJECT-PROCESS METHODOLOGY APPLIED TO AGENT DESIGN

461

description of the transactional process that occurs
during trading. Another approach would be to
investigate how bidding agents buy and sell multiple
interacting goods in auctions of different types,
which represent complex and rapidly advancing
domains of e-commerce and e-marketing.

REFERENCES

Abushar, S. and Hirata, N. Filtering with Intelligent
Software Agents. Available from:
<http://www.engin.umd.umich.edu/CIS/course.des/cis
479/projects/FISA.html.> [Accessed September 10,
2003]

Agarwal, R. and Sinha, A. P., 2003. Object-Oriented
Modeling with UML: A Study of Developer’s
Perceptions. Communication of the ACM, 46(9), 248-
256.

Cammarata, S., McArthur, D., and Steeb, R., 1983.
Strategies of Cooperation in Distributed Problem
Solving, Proc. 8th Int’l Joint Conf. on AI (IJAI-83),
Elsevier, Karlsruhe, Germany, 767-770.

Chan, T., 2001. Artificial Markets and Intelligent Agents,
Ph.D. dissertation, Dept. of Electrical Eng. and
Computer Science, Massachusetts Institute of
Technology, Cambridge, Mass., USA.

Chavez, A. and Maes, P., 1996. Kasbah: An agent
marketplace for buying and selling goods. Proc. 1st
Int’l Conf. on the Practical Application of Intelligent
Agents and Multi-Agent Technology, Practical
Application Company, London, UK, 75-90.

Das, S., 2003. Intelligent Market-Making in Artificial
Financial Markets, MSc thesis, Dept. of Electrical
Eng. and Computer Science, Massachusetts Institute
of Technology, Cambridge, Mass., USA.

Dori, D., 1996. Object-Process Analysis of Computer
Integrated Manufacturing Documentation and
Inspection Functions. International Journal of
Computer Integrated Manufacturing, 9(5), 339-353.

Dori, D., 1996. Analysis and Representation of the Image
Understanding Environment Using the Object-Process
Methodology, Journal of Object-Oriented
Programming, 9(4), 30-38.

Dori, D., 2001. Object-Process Methodology Applied to
Modeling Credit Card Transactions, Journal of
Database Management, 12(1), 2-12.

Dori, D., 2002. Object-Process Methodology − A Holistic
Systems Paradigm, New York: Springer.

Jennings, N.R. Sycara, K. and Wooldridge, M. (1998). A
Roadmap of Agent Research and Development,
Autonomous Agents and Multi-Agent Systems, 1, 275-
306.

Kovitz, B.L., 1998. Practical Software Requirements: A
Manual of Content and Style, Manning Publication
Company.

Medvidovic, N., Rosenblum, D.S., Redmiles, D.F. and
Robbins,J.E., 2002. Modeling software architectures
in the Unified Modeling Language, ACM Transactions
on Software Engineering and Methodology.
(TOSEM), 11(1), 2-57.

Meyersdorf, D. and Dori, D., 1997. The R&D Universe
and Its Feedback Cycles: An Object-Process Analysis,
R&D Management, 27(4), 333-344.

OMG, Unified Modeling Language Specification.
Available from:
<http://www.omg.org/technology/documents/formal/u
ml.htm> [Accessed September 9, 2003]

Peleg, M. and Dori, D., 2000. The model multiplicity
problem: Experimenting with real-time specification
methods, IEEE Transaction on Software Engineering,
26(8), 742- 759

Reinhartz-Berger, I. and Dori, D., 2002. OPM/Web−
Object-Process Methodology for Developing Web
Applications, Annals of Software Engineering, 13,
141-161.

Russel, S. and Norvig, P., 2003. Artificial Intelligence: A
Modern Approach, 2nd ed., New Jersey: Prentice-Hall,
USA.

Stone, P. and Greenwald, A., 2001. Autonomous bidding
agents in the trading agent competition. IEEE Internet
Computing, 5(2), 52-60.

Tomlin, C., Pappas, G. J. and Sastry, S., 1998. Conflict
resolution for air traffic management: A study in
multi-agent hybrid systems, IEEE Transaction on
Automatic Control, 43, 509-521.

Weiss, G., 2000. Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence, MIT Press,
Cambridge, Mass. USA.

Wenyin, L. and Dori, D., 1998. A Generic Integrated Line
Detection Algorithm and its Object-Process
Specification, Computer Vision − Image
Understanding, 70(3), 420-437.

Wenyin, L. and Dori, D., 1999. Object-Process Diagrams
as an Explicit Algorithm Specification Tool, Journal

 of Object-Oriented Programming, 12(2), 52-59.
Wooldridge, M., 2002. An Introduction to MuliAgent

Systems, John Wiley & Sons, UK.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

462

