
Verification On The Web Of Mobile Systems ?

Gianluigi Ferrari1, Stefania Gnesi2

Ugo Montanari1, Roberto Raggi1

Gianluca Trentanni2, and Emilio Tuosto1

1 Dipartimento di Informatica, Università di Pisa
2 ISTI-CNR, Pisa

Abstract. The vast majority of current available verification environ-
ments have been built by sticking to traditional architectural style cen-
tralized and without dealing with interoperability and dynamic recon-
figurability. In this paper we present a verification toolkit whose design
and implementation exploit the Web service architectural paradigm.

1 Introduction

The WEB provides uniform mechanisms to handle computing problems which
involve a large number of heterogeneous components that are physically dis-
tributed and (inter)operate autonomously. Recently, several software engineering
technologies have been introduced to support a programming paradigm where
the WEB is exploited as a service distributor.

Our issue in this paper is to demonstrate that the design, development and
maintenance of semantics-based verification environments are semplified by ex-
ploiting WEB services in a modular fashion taking even advantage of the reuse
and integration of “old” modules.

As a preliminary answer to this question a prototype version of a verifica-
tion toolkit has been conceived to support reasoning about the behaviour of
mobile processes specified in the π-calculus supporting the dynamic integration
of several verification techniques.

2 Service Orchestration

The architecture of the toolkit, called Mihda performing minimization of HD-
automata is described in [8], its structure is developed from the co-algebraic
formulation of the partition-refinement minimization algorithm and a web inter-
face is avalaible (http://jordie.di.unipi.it:8080/mihda).

A semantic-based verification environment for the π-calculus, called HD Au-
tomata Laboratory (HAL) [1, 2] has been implemented and experimented. HAL

is available at http://fmt.isti.cnr.it:8080/hal.

? Work partially supported by FET Projects IST-2001-33100 PROFUNDIS and IST-
2001-32747 AGILE.

Ferrari G., Gnesi S., Montanari U., Raggi R., Trentanni G. and Tuosto E. (2004).
Verification On The Web Of Mobile Systems.
In Proceedings of the 2nd International Workshop on Verification and Validation of Enterprise Information Systems, pages 72-74
DOI: 10.5220/0002660300720074
Copyright c© SciTePress

The main issue we have to face consists of making these toolkits accessible
and usable via a WEB interface. This is done into two steps: The first step defines
the WEB orchestration interface which, independently from the implementation
technologies, describes the WEB interaction capabilities; the second step defines
transforming the program facilities which correspond to publish the orchestration
interface on the WEB.

The main programming construct we exploit to program service orchestration
is XML-RPC to ensures interoperability among components available over the
WEB at the main cost of parsing and serializing XML documents.

In our running example we consider two services, namely the tools HAL and
Mihda. The WEB orchestration interface of Mihda provides three interaction
capabilities: Compile taking a π-calculus agent as input and yielding as output
the corresponding HD-automaton; reduce performing minimization on HD au-
tomata; Tofc2: Transforming the Mihda representation of HD-automata into
the FC2 format used inside HAL. The WEB orchestration interface of HAL pro-
vides three capability: Check performing model checking; unfold generating a
standard automaton out of an HD-automaton; visualize allowing to graphi-
cally operate over HD-automata. The publication on the WEB of the orches-
tration interfaces has been performed by exploiting the facilities of the web
application server Zope providing a comprehensive framework for management
of web contents and mechanisms to ”publish” information on the WEB.

In our experiment, the service orchestration language is python whose ex-
pressiveness gives us the opportunity of programming service orchestration in the
same way traditional programming languages makes use of software libraries. In
particular, services are invoked exactly as “local” libraries and all the issues
related to data marshaling/unmarshalling and remote invocation are managed
by the XML-RPC support. An example of service orchestration is illustrated
below to verify a property of a specification, i.e. to test whether a π-calculus
process A is a model for a formula F .

mihda = Server("http://jordie.di.unipi.it:8080/mihda/hd")

hal = Server("http://fmt.isti.cnr.it:8080/hal")

hd = mihda.compile(A)

reduced_hd = mihda.reduce(hd)

reduced_hd_fc2 = mihda.Tofc2(reduced_hd)

aut = hal.unfold(reduced_hd_fc2)

check = hal.check(aut, F)

In this few code lines it is clear that the only part of the orchestration that
includes network dependencies is represented by the operation that open the
connections with the HAL and Mihda servers with the service orchestration
program running under WindowsXP, pointing out the interoperability nature of
the toolkit.

However, this network dependency can be removed by introducing a further
module, namely the directory of services together with a simple trader facility
that perform the binding of services that would allow us to avoid specifying the

73

effective names (and localities) of services into the source code and to dynami-
cally bind services during the execution only on demand, making transparent the
distribution of services and allowing to repicate or to re-allocate a service into a
new locality without requiring any change into service orchestration programs.

3 Lessons Learned

We started our experiment with the goal of understanding whether the WEB
service metaphor could be effectively exploited to develop semantic-based verifi-
cation environments. In this respect, the prototype implementation of a toolkit
supporting verification of mobile processes specified in the π-calculus is a signi-
ficative example.

Our approach adopts a service orchestration model whose main advantage
resides in reducing the impact of network dependencies and of dynamic ad-
dition/removal of WEB services by the well-identified notions of directory of
services and trader. To the best of our knowledge, this is the first verification
toolkit that specifically addresses the problem of exploiting WEB services.

The service orchestration mechanisms presented in this paper, however, have
some disadvantages. In particular, they do not exploit the full expressive power
of SOAP to handle types and signatures. For instance, the so called “version
consistency” problem (namely the client program can work with one version of
the service and not with others) can be solved by types and signatures.

We plan to investigate and experiment the .NET framework to design “next
generation” semantic-based verification environments.

References

1. G. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. An au-
tomata based verification environment for mobile processes. In E. Brinksma, editor,
TACAS’97, LNCS 1217. Springer, Apr. 1997.

2. G. Ferrari, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. Verifying mobile
processes in the HAL environment. In Proc. 10th International Computer Aided

Verification Conference, pages 511–515, 1998.
3. G. Ferrari, U. Montanari, and M. Pistore. Minimizing transition systems for name

passing calculi: A co-algebraic formulation. In M. Nielsen and U. Engberg, editors,
FOSSACS 2002, volume LNCS 2303, pages 129–143. Springer Verlag, 2002.

4. IBM Software Group. Web services conceptual architecture. In IBM White Papers,
2000.

5. U. Montanari and M. Pistore. π-calculus, structured coalgebras and minimal hd-
automata. In Proc. MFCS’2000, volume 1893 of LNCS. Springer, 2000.

6. F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal

Aspects of Computing, 4(1):497–543, 1992.
7. M. Pistore. History dependent automata. PhD thesis, Computer Science Depart-

ment, Università di Pisa, 1999.
8. E. Tuosto. Non-Functional Aspects of Wide Area Network Programming. PhD

thesis, Dipartimento di Informatica, Università di Pisa, 2002.

74

