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Abstract. Composition of web services based on currently available descrip-
tions such as WSDL are error-prone because the meaning (or semantics) of the 
labels used in these syntactic descriptions is unclear. We identify three types of 
problems that can result from semantically heterogeneous descriptions during 
service composition. These problems call for a Semantic Reference System for 
semantically annotating symbols, i.e. referencing symbols to concepts and se-
mantically grounding these concepts. We present a three-level architecture for 
such a Semantic Reference System and illustrate how it can be used for solving 
the problems identified. Our example for illustration purposes is taken from the 
domain of disaster management and focuses on the composition of geographic 
information services. 

1   Introduction 

Composability is often seen as one of the main strengths of web services. In the geo-
spatial domain, after focusing mainly on services providing data and maps, the first 
(geo) processing services are currently emerging.  

To enable meaningful composability of  web services not only syntactic descrip-
tions such as WSDL [1] are needed. A further step has to be taken in providing the 
user with descriptions telling him what the labels of data types and operations used in 
a syntactic service description actually mean.  This calls for a Semantic Reference 
System [2] allowing for semantic annotation of symbols, referencing of symbols to 
concepts and semantic grounding of concepts with image schemata (Fig. 1).  

 

Fig. 1. A Semantic Reference System provides (grounded) semantics for standard service de-
scriptions 
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In this paper we introduce the architecture for a three-level Semantic Reference Sys-
tem consisting of application ontology, domain ontology and semantic grounding 
levels. We focus on data types that are used as operation input and output, rather than 
on the functionality of the operation. We illustrate the conceptual results with a real 
world example. We show that, by evaluating references of service descriptions to a 
Semantic Reference System, meaningful interoperability between services can be 
ensured during service discovery.  

The following short scenario1 is used to explain in which context we encountered 
and solved semantic problems: A service provider is about to build a composite ser-
vice for the management of accidents involving toxic gas releases from a chemical 
plant. He builds the composite service starting with the most specialized service2 and 
subsequently adding further services until the composite service meets the user’s 
requirements. The user already has the central, most specialized service of the com-
posite service available. This is a service for calculating a toxic plume (subsequently 
called CalculateGasDispersionService). The first step is to check the input and output 
of the plume service. It requires information about the wind speed, the wind direction, 
the location of the gas emission and the emission rate as input. The output is a poly-
gon indicating the dispersion of the gas. The user chooses as next step to find an addi-
tional service providing information on the wind direction and therefore searches for 
services providing weather information in a UDDI  registry [3]. He discovers two 
services: the GlobalWeatherService and the AirportWeatherService provided by 
CapeScience (http://www.capescience.com). The user now has to determine whether 
these services actually match (syntactically and semantically) the requirements of the 
CalculateGasDispersionService. The semantic problems he encounters are explained 
in the following chapter.  

2   Types of Semantic Problems 

Currently service discovery relies on the labels of input and output descriptions and 
on the labels of data types given in WSDL (or similar service metadata) descriptions. 
It is generally assumed that if the labels are the same, the transported information is, 
too. However, this is not always the case. Different types of semantic heterogeneity 
have been identified for GIS [4] and GI web services in general [5]. In the following, 
we present three types of heterogeneity problems that play a role during GI web ser-
vice composition. Each problem type is illustrated by relating it to the scenario given 
above (Fig. 2).  

                                                           
1 This scenario was developed in conjunction with the ACE-GIS e-Emergency composite 

service (http://www.acegis.net/). 
2 To keep things simple, we assume that each web service has only one operation. We therefore 

use the terms web service and operation interchangeably. 
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2.1   Problem Type I (Naming Heterogeneity) 

The output of a web service and the input of a second web service are represented 
with the same data type and refer to the same domain concept, but have different 
labels (names).  

The AirportWeatherService and the GlobalWeatherService both provide informa-
tion about the wind direction. However, the labels of the data types containing the 
required information are different. The GlobalWeatherService refers to the informa-
tion as prevailing_direction while the AirportWeatherService labels the information 
as wind. However, both elements represent the same (domain) concept of wind direc-
tion. 

This problem can be solved by annotating the elements used in the WSDL descrip-
tions with concepts from an application ontology. The application concepts are al-
ways referenced to (or derived from) more general domain concepts. The reference 
includes additional restrictions on the properties of the domain concept, thus con-
straining the meaning of the application concept. If two application concepts refer to 
the same domain concept and their restrictions are identical, the meaning of the anno-
tated symbols is the same. 

 

Fig. 2. Types of semantic problems. Restrictions on a domain concept change its meaning 
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2.2   Problem Type II (Data Type Heterogeneity) 

The output of a web service and the input of a second web service have the same 
labels (names) and refer to the same domain concept, but are represented with differ-
ent data types.  

The example given above is further complicated by a second source of heterogene-
ity. The GlobalWeatherService provides the wind direction information represented 
as a complex type labeled Direction. The AirportWeatherService provides this infor-
mation contained in a String. However, both elements represent the same domain 
concept3. 

This problem is not simply to be considered syntactical heterogeneity since the 
meaning of the information contained in a complex type is not explicit to the user. 
When dealing with complex data types, a semantic description of their structure and 
content can help in supplying rules for transforming them or for extracting the re-
quired information. How to semantically describe complex types such that these rules 
can be generated automatically from the descriptions will be a topic for future re-
search. In our current approach we assume that appropriate parsers are available for 
transforming the information into the required data type of the preceding service.  

2.3   Problem Type III (Conceptual Heterogeneity) 

The output of a web service and the input of a second web service have the same 
labels (names), are represented with the same data type, but refer to different domain 
concepts. 

Consider now the wind information represented as a String provided by the Air-
portWeatherService as described above. And consider further that the CalculateGas-
DispersionService also requires wind information represented as a String. However, 
the CalculateGasDispersionService interprets the provided String not as degrees 
characterizing the direction the wind is blowing from. Instead it interprets the String 
as characterizing the direction the wind is blowing to. This misinterpretation intro-
duces a 180-degree mismatch.  

This can lead to the creation of composite services that produce results not in-
tended by the user. This is due to the fact that currently most composite services are 
built manually using WSDL-based service descriptions. If inputs and outputs of op-
erations have the same name and data type, the user cannot tell that these operations 
refer to different domain concepts. The underlying assumption causing this problem is 
that if something is described identically, it must have the same meaning. 

By referencing the application level concepts to different domain concepts, or by 
using different restrictions on the same domain concepts, it can be prevented that 
services whose inputs and outputs do not match (on the conceptual level) are com-
bined in a service chain. 

                                                           
3 Note that in the example which is taken from existing web services, problem types I and II 

occur simultaneously. For clarification, the example problem is split into two problems types. 
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3   Semantic Reference System 

This chapter gives a brief introduction of the three levels of the Semantic Reference 
System and how they are related to each other. The application and domain levels 
consist of ontologies, i.e. “explicit specifications of a conceptualization” [6]. The 
necessity of introducing three levels is explained in the following section, which re-
lates the user’s tasks during service composition to the semantic problems identified 
in the previous section. For better comprehension we start with describing the middle 
section on the architecture, the Conceptual Level. Fig. 3 gives an overview of the 
three-leveled architecture of a Semantic Reference System. 

 

Fig. 3. Three-level Semantic Reference System; left: the levels meet different requirements 

3.1   Conceptual Level 

The Conceptual Level is the level of human concepts. A domain ontology provides an 
agreed-upon conceptualization of a certain part of the world; in our example a small 
part of the domain of meteorology. Such a domain ontology will never be complete 
since the meteorological knowledge evolves and the terms used change. But it will 
serve to describe a particular worldview on this domain and the vocabulary humans 
use to communicate about it. 

The domain ontology makes a world view explicit and presents it in a machine- in-
terpretable way. It is important to note, that the task of connecting a symbol with a 
concept in the human mind, in other words assigning meaning to a symbol, remains 
partly with the user. However, the important contribution of a domain ontology is that 
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the many possible conceptualizations an English speaking user could assign to sym-
bols such as wind are restricted via a set of relations to other symbols and by classify-
ing the symbols in a subsumption hierarchy. In this way, the domain ontology re-
stricts the meaning of a known symbol (term). 

Thus, while the domain ontology assigns meaning to a symbol by providing a con-
ceptualization for it, this conceptualization is based on the use of other symbols. The 
meaning of these symbols is either given by yet other symbols or by assuming that the 
user knows the meaning of these symbols. The latter may work within a small user 
community, but for larger communities this assumption will not hold. 

3.2   Semantic Grounding Level   

To escape the vicious circle of defining concepts with other concepts on an ever 
higher level of abstraction or by assuming the user knows the meaning of symbols a 
Semantic Grounding Level is required. Semantic grounding is the process of referenc-
ing a concept described on the conceptual level to concepts form which is assumed 
that their meaning is common to the user and thus needs no further definition. 

We propose image schemata to semantically ground the concepts used on the Do-
main Ontology Level. Image schemas fall between abstract propositional structures 
(such as predicates) and concrete images (such as the spatial mental images in [7]). 
They are developed through bodily experiences and influence our reasoning through 
the recurrence of form and function. They stand in a long tradition of representing 
elements of knowledge into patterns or schemas. An image schema can be seen as a 
generic and abstract structure that helps people establish a connection between differ-
ent experiences that have this same recurring structure. Therefore, meaning involves 
image-schematic structures [8, 9].  

After defining the meaning of a symbol via the restrictions posed on it on the Con-
ceptual Level, references to image schemata which are represented using similar 
methods as employed for the domain ontologies will further reduce semantic ambigu-
ity. These references will be based on non-taxonomic relations, avoiding the sub-
sumption of domain concepts under image schemata. We intend to restrict the mean-
ing of domain concepts by using the shared and thus common understanding of image 
schemata. Image schemata are seen as semantic datum in a Semantic Reference Sys-
tem, in analogy to the datum of spatial reference systems. 

3.3   Application Level 

On the application level, meaning is assigned to web service descriptions, i.e. the 
symbols (labels) used in the WSDL-based service description are captured in an ap-
plication ontology. The method to build an application ontology is similar of such for 
building domain ontologies. However, in the domain ontology the meaning for the 
general vocabulary of a certain domain is captured. The application ontology now 
makes use of the symbols to which meaning is already assigned and connects these to 
the semantics-free symbols of the WSDL descriptions. 

The reason for introducing an application level is that the domain ontology may 
define concepts in a way which is to general for a certain application. Therefore the 
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application level provides a possibility for further restricting the meaning of domain 
ontology concepts. It is also possible to introduce concepts not contained in the do-
main ontology by using non-taxonomic relations to domain ontology concepts. This is 
why application ontologies should not be understood as specializations of domain 
ontologies as could be inferred from [10; figure 4]. 

Since meaning is passed from the Groundling Level via the Conceptual Level to 
the Application Level consistency issues are to be considered on the Grounding and 
Conceptual Level. We argue that domain and grounding ontology provider are re-
sponsible for keeping updates of their ontologies consistent with prior versions. Ex-
tending domain or grounding ontologies with new concepts will cause no problems on 
application level. However extending existing concepts with new restrictions or 
changing existing restrictions can cause consistency problems on the application 
level. Since domain and grounding ontologies are considered to be relatively stable 
constructs with only few changes after an initial development phase, comparable to 
agreed upon meta data standards. Therefore we consider the three-leveled architecture 
as good solution for guaranteeing consistency and at the same time allowing for 
evolving semantics over time.  

4   Semantic Problem Types Related to User Tasks during Service 
Composition  

The types of semantic problems identified in the previous section will now be related 
to the user’s tasks during service composition in order to explain the need of a three-
level semantic reference system. Each of the levels and the references between them 
will be illustrated by providing formal definitions of concepts for the example sce-
nario. The ontologies containing these definitions can be found at http://musil.uni- 
muenster.de/onto/. 

For enhanced readability these concepts are imported from the different ontologies 
(e.g. grounding.owl or domain1.owl) into one ontology. The prefixes of the concepts 
(e.g. grounding:) shown indicate from which ontology they are taken (Fig. 4 and 5). 
The prefixes, e.g. domain1 can be extended to the full XML namespace. 

The ontology language employed is the Web Ontology Language OWL [11]. To 
build the ontologies we employed the ontology editor Protégé 2.0 [12] in combination 
with an plug-in supporting OWL [13]. 
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Defining the concept of “wind direction”. As starting point of service discovery, the 
user needs the possibility to specify his concept of wind direction. This is performed 
by querying a domain ontology (for meteorology). In the example, the user will find 
the concept WindDirection with all properties relevant in the domain of meteorology 
(Fig. 4). The property hasReferenceSystem relates WindDirection to the concept 
ReferenceSystem. Its sub-concept DirectionReferenceSystem in turn has the properties 
rotation, origin, and unit of measure. Via the concept DirectionReferenceSystem the 
user could, for example, specify that the concept of WindDirection he is looking for 
takes north as origin, turns clockwise and uses degrees as a unit of measure.  

To further decrease the ambiguity of domain ontology concepts, properties using or 
based on image schemata are employed. For example, compulsion is identified as an 
image schema by [8]. The domain ontology property pointsToCompulsion is therefore 
referenced to the grounding level. The possibility of referencing domain ontology 
concepts to image schemata decreases the likelihood of ambiguously interpreted do-
main ontology concepts. The (yet incomplete) set of image schemata, their internal 
structure and how they can serve as semantic grounding level need further investiga-
tion. However, the possibility to break the vicious circle of defining concepts with 
other (undefined) concepts is appealing. 

 

Fig. 4. Definition of the domain ontology concept wind direction in the ontology editor Protégé 
using the OWL plug-in (modified screenshot). 

Finding services dealing with the identified concept. With the chosen concept 
“wind direction” the user discovers all three services in an application ontology 
registry since the labels used in their WSDL service descriptions refer to application 
ontology concepts. The WSDL labels wind (from AirportWeatherService) and 
prevailing_direction (from GlobalWeatherService) both refer to the application 
ontology concept application1:WindDirection. The WSDL label wind (from 
CalculateGasDispersionService) refers to application2:WindDirection. 
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Although both application ontology concepts are defined using the same domain 
ontology concept, the restrictions put on their references reveal that the two concepts 
are different. They represent the direction in which respectively from which the wind 
is blowing. Discovering whether two concept definitions are equivalent or similar and 
whether concepts are related in a subsumption hierarchy is easy in the simple example 
we use for illustration. However, when using more complex definitions, it becomes 
much more difficult. In such cases a reasoning engine such as RACER [14] can be 
used to compute a subsumption hierarchy and to identify equivalent concepts.  

With the currently existing WSDL descriptions the user has to judge whether the 
application concepts differ in such a way that chaining the services will produce 
wrong results. In this example, chaining the AirportWeatherService or the Global-
WeatherService to the CalculateGasDispersionService both would result in a 180-
degree mismatch.  

 

Fig. 5. Definition of two application ontology concepts representing two different conceptuali-
zation of wind direction 

The domain ontology concept plus the restrictions on its interpretation provide mean-
ing to the labels used in the WSDL service descriptions. Here it becomes obvious why 
domain ontology and application ontology need to form separate levels. The domain 
ontology provides a stable source of broadly defined (domain) concepts. The applica-
tion ontology provides the service developer with a flexible means to restrict the 
meaning of the domain ontology concepts. Finding services using the same restric-
tions on domain concepts solves naming problems (problem type I). The possibility 
for the user to be aware of different restrictions solves conceptual problems (problem 
type III). 
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Alternative Search. Consider a user which belongs to a user community different 
form that which built the domain ontology. It is likely that such a user has difficulties 
in “finding the right words” to start a search on a domain ontology which is based on 
unfamiliar vocabulary. Instead he specifies a query “find concepts which describes 
wind”, by using the describes property and the wind concept from the domain 
ontology. This approach follows the user-defined query concept introduced by [15]. 
The reasoning engine RACER returns application ontology concepts which 
implement such property. Our ontology architecture application ontologies contain 
references to the services they describe. Finding an application ontology concept 
which is a sub-concept of the user-defined query immediately indicates a web service 
potentially interesting to the user. The two application ontologies in our example can 
be distinguished by a user-defined query which is asking for a service which 
understands a wind direction as pointing to the compulsion the wind creates. This is 
achieved by searching for concepts implementing the pointsToCompulsion property 
with the value true. 

Learn how the service represents the needed information. Consider the user 
searches for services dealing with wind direction where the property 
domain1:pointsToCompulsion is true. Such a query would result in finding the 
AirportWeather-Service and the GlobalWeatherService which reference to the 
application ontology called application1. Now the user needs to know which data 
types are used to represent the information he requires. For this purpose the 
application ontology of the services is queried. The resulting human-readable 
description of the data types employed in the service can be used to deal with 
problems of type II. How to automatically derive rules for transforming complex 
types or for extracting the required information automatically from the descriptions 
will be a topic for future research. 

5   Related Work 

With the maturation of service-oriented computing, several approaches to service 
discovery that are based on service descriptions referring to ontologies have been 
proposed (e.g. [16-18]). We share with these approaches the use of inference engines 
for evaluating subsumption relationships between the ontology concepts that are used 
for annotating syntactic service descriptions. However, we differ from these ap-
proaches in the ontology architecture applied. 

In [19] a classification of different ontology architectures used for making the se-
mantics of information sources explicit is introduced (Fig. 6). 
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Fig. 6. Different ontology architectures for information integration [19] 
 
( ) Single Ontology approaches use one global ontology providing a shared vocabu-

lary for the specification of the semantics. All information sources are related to 
the global ontology. Such approaches can be applied to problems where all in-
formation sources to be integrated provide a very similar view on a domain. 

( ) In multiple ontology approaches, each information source is described by its own 
ontology.  In principle, each of these application ontologies can be a combination 
of several other ontologies. However, it can not be assumed that several applica-
tion ontologies share the same vocabulary. While each application ontology can 
be developed independently, the lack of a common vocabulary makes it difficult 
to compare different application ontologies. 

( ) Hybrid approaches are similar to multiple ontology approaches in that the se-
mantics of each source is described by its own ontology. But in order to make the 
local ontologies comparable to each other they are built from a global shared vo-
cabulary. The shared vocabulary contains basic terms (the primitives) of a do-
main which are combined in the local ontologies in order to describe more com-
plex semantics. Sometimes the shared vocabulary is also an ontology. 

The approaches currently proposed for semantic service discovery employ simple 
ontology architectures that can be classified as single ontology approaches. The use of 
ontologies on multiple levels is not intended. In contrast, the ontology architecture in 
this paper can be seen refinement of the hybrid ontology approach. Our domain on-
tology corresponds to a shared vocabulary as shown in Fig. 6c. In addition, the image-
schemata-based ontology on the grounding level provides a means for comparing 
concepts form different domains on the one hand, and for grounding domain concepts 
in human cognition on the other hand. 
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6   Conclusion and Future Work 

We have identified three types of semantic problems that may occur during web ser-
vice composition: Naming heterogeneity, conceptual heterogeneity and data type 
heterogeneity. We have illustrated these types by relating them to a real world exam-
ple based on services employed in a composite service for the management of acci-
dents involving toxic gas releases from a chemical plant. Meaningful composability 
of web services needs semantic interoperability between web services. We argue that 
semantic interoperability needs a sound theory of semantic grounding. 

Therefore we have introduced a three-level Semantic Reference System for tack-
ling the identified problem types. It allows the user to 
− discover appropriate services, even when they are named differently than expected, 
− identify data type heterogeneity and take further syntactical integration steps, and 
− Discover conceptual heterogeneity problems and thus avoid the construction of 

composite services producing unintended results. 
We have shown in an example ontology how to give meaning to the symbols (labels 
of data types) used in WSDL descriptions. This is done by referencing the symbols to 
an application ontology, which in turn derives meaning for its concepts from a do-
main ontology, which in turn grounds its concepts on an image schemata-based 
grounding level. 

We argue that the introduced Semantic Reference System allows for the different 
degrees of flexibility, unambiguity and stability such a system has to provide. Apart 
from the grounding of meaning with image schemata on the grounding level, the 
innovation of this approach lies in the flexibility of the application ontology level. On 
this level, a service developer can model virtually anything (including totally fictive 
worlds) using restrictions on domain ontology concepts. Likewise, a user can find a 
certain concept based on a domain ontology vocabulary and learn how its meaning is 
restricted on the application ontology level. While this avoids that statements that are 
valid in a certain application ontology need to be valid in another one, they can still be 
traced back to their common domain ontology concept. 

Future work includes the exploration of the reliability and usability of image sche-
mata for grounding the semantics of domain ontology concepts. Also, we aim to es-
tablish a working prototype of the described Semantic Reference System. This in-
volves the implementation of an environment for testing the semantics of inputs and 
outputs of composite services.  

Acknowledgements 

The work presented in this paper has been supported by the European Commission 
through the ACE-GIS project (grant number IST-2002-37724) and the German Fed-
eral Ministry for Education and Research as part of the GEOTECHNOLOGIEN pro-
gram (grant number 03F0369A). It can be referenced as publication no. GEOTECH-
52. 

34



 

References 

1. Chinnici, R., Moreau, J.-J., Gudgin, M., Schlimmer, J., Weerawarana, S. Web Services 
Description Language (WSDL) Version 2.0 Part 1: Core Language.[Online]. Available: 
http://www.w3.org/TR/2003/WD-wsdl20-20031110/ 

2. Kuhn, W.: Semantic Reference Systems. International Journal of Geographical Information 
Science (2003) 

3. Bellwood, T., Clément, L., von Riegen, C. (2003) UDDI Version 3.0.1.[Online]. Available: 
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm 

4. Bishr, Y.: Overcoming the semantic and other barriers to GIS interoperability. International 
Journal of Geographical Information Science 12 (1998) 299-314 

5. Lutz, M., Riedemann, C., Probst, F.: A Classification Framework for Approaches to 
Achieving Semantic Interoperability. In: S. Timpf, (ed.) COSIT 2003 (Conference on Spa-
tial Information Theory). Springer (2003) 200-217 

6. Gruber, T.: A Translation Approach to Portable Ontology Specifications. Knowledge Ac-
quisition 5 (1993) 199-220 

7. Barkowsky, T.: Mental Processing of Geographic Knowledge. In: D. Montello, (ed.) Spa-
tial Information Theory - Foundations of Geographic Information Science, Proceedings of 
COSIT 2001, Morro Bay, CA, USA, September 2001. Springer (2001) 371-386 

8. Johnson, M.: The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Rea-
son. The University of Chicago Press, Chicago (1987) 

9. Gärdenfors, P.: Conceptual Spaces - The Geometry of Thought. Bradford Books, MIT 
Press, Cambridge, MA (2000) 

10. Guarino, N.: Formal Ontology and Information Systems. In: Proc. Formal Ontology in 
Information Systems (1998) 3-15 

11. McGuinness, D. L., Van Harmelen, F. (2004) OWL Web Ontology Language, W3C Can-
didate Recommendation.[Online]. Available: http://www.w3.org/TR/2003/CR-owl-
features-20030818/ 

12. Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W., Musen, M. A.: Creating 
Semantic Web Contents with Protege-2000. IEEE Intelligent Systems 16 (2001) 60-70 

13. Knublauch, H. (2004) Editing OWL Ontologies with Protégé.[Online]. Available: 
http://protege.stanford.edu/plugins/owl/tutorial/index.html 

14. Haarslev, V., Möller, R. (2003) RACER User’s Guide and Reference Manual Version 
1.7.7.[Online]. Available: http://www.sts.tu-harburg.de/~r.f.moeller/racer/racer-manual-1-
7-7.pdf 

15. Visser, U., Stuckenschmidt, H.: Interoperability in GIS - Enabling Technologies. In: Proc. 
5th AGILE Conference on Geographic Information Science (2002) 291-297 

16. Kawamura, T., De Blasio, J.-A., Hasegawa, T., Paolucci, M., Sycara, K.: Preliminary Re-
port of Public Experiment of Semantic Service Matchmaker with UDDI Business Registry. 
In: Proc. First International Conference on Service-Oriented Computing (ICSOC 2003) 
(2003) 

17. Paolucci, M., Kawamura, T., Payne, T. R., Sycara, K.: Semantic Matching of Web Service 
Capabilities. In: Proc. 1st International Semantic Web Conference (ISWC2002) (2002) 
333-347 

18. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic Composition of Web Services using Se-
mantic Descriptions. In: Proc. "Web Services: Modeling, Architecture and Infrastructure" 
Workshop (in Conjunction with ICEIS2003) (2003) 

19. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hüb-
ner, S.: Ontology-Based Integration of Information — A Survey of Existing Approaches. 
In: Proc. IJCAI-01 Workshop: Ontologies and Information Sharing (2001) 108-117 

 

35


