
A Generalized Policy Support System and
Its Hierarchy Semantics

Yibing Kong, Janusz R. Getta, Ping Yu, and Jennifer Seberry

School of Information Technology and Computer Science,
University of Wollongong,

Wollongong, NSW, Australia

Abstract. One common characteristic of manyPolicy Support Systems(PSSs)
is their dependency on the concept ofhierarchy. Hierarchy does not need to be
limited to a hierarchy of roles (subject centric) as in traditional Role-Based Ac-
cess Control (RBAC). Instead, it can be applied to other aspects ofPSS such as
object, environment, purpose and so on. In this paper, we propose a new general-
ized model forPSS. The model unifies Generalized Role-Based Access Control
(GRBAC) and Enterprise Privacy Practices (E-P3P) policy support systems and
generalizes their hierarchy semantics.

Keywords: Access Control, Hierarchy, Hierarchy Semantics

1 Introduction

Organizations must enforce data protection policies to secure data collected and gen-
erated during their daily operational procedures. At a conceptual level, data protection
polices are expressed as sequences of statements written in a natural language. In the
past, the enforcement of data protection policies was based on manual work or inflexible
mechanisms such as Discretionary Access Control (DAC), Mandatory Access Control
(MAC) models. The emerge of Role-Based Access Control (RBAC) model improved
efficiency of data protection. Unfortunately, RBAC model is still not expressive enough
to efficiently and effectively enforce more sophisticated data protection policies in an
organization. Recently more powerful systems have appeared; Generalized Role-Based
Access Control (GRBAC) [1] and Enterprise Privacy Practices (E-P3P) [2] are repre-
sentatives of such systems.

GRBAC, proposed by Moyer and Ahamad in [1], is an extension of traditional
RBAC. It generalizes the classical concept ofrole through the new concepts such as
subject role,object roleandenvironment role. These concepts are used to structure the
subjects (users), objects (data) and environments (conditions). With these new types of
roles, GRBAC is capable of creating rich access control policies. GRBAC provides an
algorithm to enforce the access control policies defined in the model. E-P3P, developed
by Ashleyet al. in [2], has a well-defined privacy architecture and semantics. It enables
an organization to express its privacy policies in E-P3P format and to enforce the poli-
cies automatically. We shall call these two systems asPolicy Support Systems(PSSs)
because they are designed for expressing and enforcing data protection policies.

Kong Y., R. Getta J., Yu P. and Seberry J. (2004).
A Generalized Policy Support System and Its Hierarchy Semantics.
In Proceedings of the 2nd International Workshop on Security in Information Systems, pages 136-145
DOI: 10.5220/0002667301360145
Copyright c© SciTePress



A hierarchyis a partial order on a set of elements that defines a seniority relationship
between elements [3]. Hierarchy is not a new concept, it has been extensively studied
in the past.Role hierarchy[4–7] in role-based access control andhierarchyin Flexible
Authorization Framework (FAF) [8] are examples of such studies. Hierarchy semantics
is an inseparable part of hierarchy that defines rules of authorization propagation. Var-
ious hierarchy semantics was defined in GRBAC and E-P3P. However, the hierarchy
semantics defined is either incomplete or incorrect. In this paper, we propose a gener-
alizedPSS model that covers GRBAC and E-P3P. Based on this model, the hierarchy
semantics of GRBAC and E-P3P is analyzed. We propose new hierarchy semantics to
solve the problems encountered in GRBAC and E-P3P.

The organization of the rest of the paper is as follows. Section 2 introduces the con-
cept of hierarchy. A generalizedPSS is proposed in section 3 and hierarchy semantics
of GRBAC and E-P3P is analyzed in section 4. Section 5 presents new hierarchy se-
mantics. Finally, in section 6, we conclude the paper and outline the plans of future
research.

2 Definition of Hierarchy

A mathematical structure calledhierarchywas defined by Jajodiaet al. in [8] as a triple
(X, Y,≤), whereX is the set ofprimitive entities, e.g. a user, an object;Y is the set of
categories, e.g. a group, an object type;≤ is a partial order on(X ∪ Y ) such that each
x ∈ X is aminimal elementof (X∪Y ); an elementx ∈ X is said to be minimal iff there
are no elements below it in the hierarchy, that is iff∀y ∈ (X ∪ Y ) : y ≤ x ⇒ y = x.
This definition is rich enough to capture all hierarchy structures presented in [1, 2]. We
simplify this definition of hierarchy to a two-entry tuple(Y,≤), i.e.H = (Y,≤) where:

• Y is the set of categories, such that a primitive entity is treated as a category of
itself, calledprimitive category. A primitive category contains one primitive en-
tity and the name of the category is the same as the name of the primitive entity.
For example a primitive entityJames Bondbelongs to a primitive category called
James Bond.

• ≤ is a partial order onY such that each primitive category inY is a minimal element
of Y .

In addition, we define the following two binary relations overY . The first binary
relation< describesdescendant-ancestorrelationship between the elements inY . If
yi, yj ∈ Y andyi < yj , yj is said to be the ancestor ofyi; yi is said to be the descendant
of yj . The relationyi < yj is interpreted asyi is in the category ofyj . For an element
yi, a set of all its ancestors is defined asAsetyi = {yk : yk ∈ Y andyi < yk}; a set
of all its descendants isDsetyi = {yk : yk ∈ Y andyk < yi}. The second binary
relation<C describeschild-parentrelationship between elements inY . If yi, yj ∈ Y
andyi <C yj , yj is said to be the parent ofyi; yi is said to be the child ofyj . For an
elementyi, a set of all its parents is defined asPsetyi

= {yk : yk ∈ Y andyi <C yk};
a set of all its children isCsetyi

= {yk : yk ∈ Y andyk <C yi}.
Some of the hierarchies used in practice are listed as follows.Subject hierarchy

GH = (G,≤G) whereG is a set of groups (roles),≤G defines hierarchy relationships

137



between groups inG. Object hierarchyTH = (T,≤T ) whereT is a set of types,
≤T defines hierarchy relationships between types inT . Environment hierarchyEH =
(E,≤E) whereE is a set of environments,≤E defines hierarchy relationships between
environments inE. Purpose hierarchyPH = (P,≤P ) whereP is a set of purposes,
≤P defines hierarchy relationships between purposes inP .

3 A Generalized Model of a Policy Support System

It is common for aPSS to define more than one hierarchies. For example, GRBAC
[1] definesGH, TH and EH hierarchies and E-P3P [2] definesGH,TH and PH
hierarchies. Furthermore these systems define some sets of elements, such as the set
of actions, the set of obligations, the set of authorization types etc. In this section, we
define a generalized model which unifies GRBAC and E-P3P.

A generalizedPolicy Support SystemPSS = (H,S,A,R,P), where:

• H denotes a set ofn hierarchiesH1, ...,Hn, n ≥ 1.
• S is a set ofm setsS1, ..., Sm, wherem ≥ 0. The sets defined inS provide ad-

ditional restrictions onPSS; for example the sets of obligations and conditions in
E-P3P system are instances of such sets.S is optional and its existence depends on
the designer of aPSS, e.g. in GRBACS is absent.

• A is a set of actions to be performed on data.
• R is a set of authorization types (rulings).R = {+,−,⊕,ª,¯,⊗}, where+

meanspositive authorization; − meansnegative authorization; ⊕ meansimplicit
positive authorization; ª meansimplicit negative authorization; ¯ meansautho-
rization pendingand⊗ meansno authorization. + and− are used for explicit
authorization assignment through policy rules;⊕ andª are used for authorization
propagation;̄ is used for conflicts resolution;⊗ is used when none of the above
five rulings is applicable.

• P is a set of precedences over policy rules.P = Z, i.e.P is the set of integers that
determines precedence orders over a set of policy rules; the greater number denotes
the higher precedence.P is also optional; the absence ofP means that all policy
rules have the same precedence.

The elements of the above five parts are used as basic units to form policy rules. The
collection of all the policy rules in aPSS is a policy rule set, denoted asΓ . A policy
rule γ ∈ Γ is a tuple(γH1 , ..., γHn , γS1 , ..., γSm

, γA, γR, γP) where

• γHi
∈ Hi or γHi

= null (i.e. nothing is specified forγHi), wheren ≥ i ≥ 1.
• γSi ∈ Si or γSi = null, wherem ≥ i ≥ 0.
• γA ∈ A is the action entry that specifies the action to be performed.
• γR ∈ {+,−} is the ruling entry that specifies either positive or negative authoriza-

tion.
• γP ∈ P is the precedence ofγ.

138



It is possible to show that the model defined above “includes” GRBAC [1] and
E-P3P [2]. A GRBAC system is a triple(H,A,R), whereH = {GH,TH, EH}
(GH is subject hierarchy,TH is object hierarchy andEH is environment hierar-
chy). A GRBAC policy rule [1] is a tuple(S,O, E, op, permission bit), whereS ∈
GH, O ∈ TH, E ∈ EH, op ∈ A andpermission bit∈ {+,−}. There is no prece-
dence over GRBAC policy rules, hence the setP is absent. An E-P3P system is a tuple
(H,S,A,R,P), whereH = {GH,TH, PH},S = {O, C} (GH is subject hierarchy,
TH is object hierarchy,PH is purpose hierarchy,O is the set of obligations andC is
the set of conditions). An E-P3P policy rule [2] is a tuple(i, t, p, u, r, a, o, c), inside
which i ∈ P, t ∈ TH, p ∈ PH, u ∈ GH, r ∈ {+,−}, a ∈ A, o ∈ O andc ∈ C.

According to the definition of a policy rule, anaccess requestα can be expressed
asα = (αH1 , ..., αHn , αS1 , ..., αSm , αA) whereαHi ∈ Hi or αHi = null, n ≥ i ≥ 1;
αSi ∈ Si or αSi = null, m ≥ i ≥ 0; αA ∈ A. A set of policy rulesΓα is used
to validateα, whereΓα ⊆ Γ . All policy rules in Γα are calledmatching rulesof α.
Matching rules must satisfy the following properties:

• ∀γ ∈ Γα, αHi ≤ γHi , wheren ≥ i ≥ 1.
• ∀γ ∈ Γα, γSi = αSi , wherem ≥ i ≥ 0.
• ∀γ ∈ Γα, γA = αA.

The validation ofα in Γα consists ofn sub-validations fromαH1 to αHn
. That is,

∀αHi
∈ α wheren ≥ i ≥ 1, αHi

needs to be validated according to the matching rule
setΓα whetherαHi

is authorized forαA. If and only if all of these hierarchy elements
are authorized forαA, α is granted.

∀γ ∈ Γα, whereγ = (γH1 , ..., γHn
, γS1 , ..., γSm

, γA, γR, γP), we can assign a
tuple (γR, γP) to γH1 , ..., γHn

. An authorizationof an elementy ∈ H is a tuple
(ruling, precedence) inside whichruling ∈ R, precedence ∈ P; it is denoted as
Ai

y wherei is the index of the authorization. Due to the optional property ofP, the
precedence entry of an authorization is also optional. The ruling entry ofAi

y is denoted
asAi

y.ruling and the precedence entry ofAi
y is denoted asAi

y.precedence. We call
an authorization explicitly defined by policy rulesexplicit authorization; obviously for
an explicit authorizationA, A.ruling ∈ {+,−}. Authorization may also be derived by
hierarchy semantics, we call a derived authorizationimplicit authorization; for an im-
plicit authorizationA, A.ruling ∈ {⊕,ª}. If an explicit authorizationA1

yi
of yi ∈ H

propagates toyj ∈ H, thenA1
yi

is converted to an implicit authorizationA1
yj

by the
following processes: ifA1

yi
.ruling = +, thenA1

yj
.ruling = ⊕; if A1

yi
.ruling = −,

thenA1
yj

.ruling = ª; A1
yj

.precedence = A1
yi

.precedence.
Here is an example of assigning explicit authorizations, assumeΓα = {γ1, γ2};

γ1 = (..., γ1Hi
, ..., read, +, 1), γ2 = (..., γ2Hi

, ..., read,−, 2), whereγ1Hi
= γ2Hi

=
y ∈ Hi; thenA1

y = (+, 1), A2
y = (−, 2). Two authorizationsAi

y, Aj
y are inequable

if either Ai
y.ruling 6= Aj

y.ruling or Ai
y.precedence 6= Aj

y.precedence holds. When
an element of a hierarchy has more than one inequable authorizations, conflicts arise.
Our system provides methods of conflicts resolution, calledauthorization precedence
policy. In our system, conflicts can be solved eithermanuallyor automatically. For a
hierarchyHi = (Yi,≤i), theSystem Security Officer(SSO) defines amanual resolution
setMRi ⊆ Yi. If an elementy ∈ MRi has authorization conflicts, we assigny with

139



the authorization(¯, ). In this case, the decision of the access requestα that causes the
conflicts will be pending until the conflicts are manually solved by SSO. If an element
y ∈ Yi \ MRi has authorization conflicts, these conflicts are solved automatically by
the following rules.

• ¯ authorizations are with the highest precedence;⊗ authorizations are with the
lowest precedence. There are no maximum and minimum integers inZ, hence the
precedence entries of these two types of authorizations are absent. An authorization
with higher precedence overrides authorizations with lower precedences.

• If the precedences are the same,denies-take-precedencewill apply. The priority
order is:−,ª, +,⊕. An authorization with higher priority order overrides autho-
rizations with lower priority orders.

Our authorization precedence policy is very flexible. Authorization pending gives
SSO opportunities to review authorization conflicts. By doing that, SSO may find bugs
of Γ and give user better response. After we perform all authorization derivations and
conflicts resolutions onHi, Hi’s final authorization stateis obtained, where∀y ∈ Hi,
y has afinal authorizationFAy that is not conflicting. The result of the sub-validation
of αHi

is FAαHi
.ruling. The decision ofα is processed as follows.

• If ∀FAαHi
.ruling = + (or⊕) wheren ≥ i ≥ 1, thenα is approved.

• If ∃FAαHi
.ruling = − (orª or⊗), thenα is denied.

• If α is not denied and∃FAαHi
.ruling = ¯, thenα is pending.

4 Hierarchy Semantics of GRBAC and E-P3P

Hierarchy semantics defines rules of authorization propagation. In this section, the hi-
erarchy semantics of GRBAC and E-P3P is depicted.

4.1 Hierarchy Semantics of GRBAC

The hierarchy semantics in GRBAC [1] is defined bypermission inheritance. There are
three types of permission inheritances:standard, strict and lenient. Suppose we have
an access requestα = (αGH , αTH , αEH , αA), whereαGH = y4 ∈ GH, denoted as
GH.y4, αTH = TH.y5 andαEH = EH.y2. Here we utilize the validation ofGH.y4

to illustrate the semantics of the three types of permission inheritances.

• Standard permission inheritance:
If ∃yi ∈ AsetGH.y4∪{GH.y4} such thatFAyi

.ruling = + and¬∃yj ∈ AsetGH.y4∪
{GH.y4} such thatFAyj .ruling = −, thenGH.y4 is authorized forαA. Other-
wise, it is not authorized forαA.

• Lenient permission inheritance:
If ∃yi ∈ AsetGH.y4 ∪ {GH.y4} such thatFAyi

.ruling = +, thenGH.y4 is
authorized forαA. Otherwise, it is not authorized forαA.

• Strict permission inheritance:
If ∀yi ∈ AsetGH.y4 ∪ {GH.y4} such thatFAyi .ruling = +, thenGH.y4 is
authorized forαA. Otherwise, it is not authorized forαA.

140



Fig. 1. Example object hierarchyTH

An example below illustrates the hierarchy semantics of GRBAC. Consider the
object hierarchyTH shown in figure 1; there are 9 elements inTH, among which
jingle.mp3 (y8) is a primitive category that is a child ofclassified file(y4) andMP3
file (y7). Now there is an access requestα from useru (we assumeu is y6 in GH) to
readjingle.mp3 (TH.y8) under environmente (we assumee is y1 in EH), i.e. α =
(GH.y6, TH.y8, EH.y1, read). The policy rule setΓ = {γ1, γ2}; γ1 = (GH.y6, TH.y4,
EH.y1, read, +), γ2 = (GH.y6, TH.y7, EH.y1, read, +). Obviously, the matching
rule setΓα = Γ . According to GRBAC hierarchy semantics, we can derive thatu can
readjingle.mp3 if standard or lenient permission inheritance is applied;u cannot read
it if strict permission inheritance is applied.

The original intention of strict permission inheritance is to restrict accesses to the
elements in the category of sensitive/vulnerable categories defined by SSO. GRBAC’s
strict permission inheritance is trying to fulfill this intention. However this definition
is too strict to be practical. In the example above, useru is explicitly authorized to
read bothclassified fileandMP3 fileand there is no policy rule disallow these accesses
(as shown in the exampleΓ above). In this case, even if we are very strict, useru
should have read access tojingle.mp3, which is a child ofclassified fileandMP3 file.
GRBAC will deny this access because GRBAC’s strict permission inheritance requires
the requested element and all its ancestors to be explicitly authorized for the access;
obviously this is too strict. If a system deploys this strict permission inheritance, few
access requests can be granted.

4.2 Hierarchy Semantics of E-P3P

In E-P3P, an access requestα is processed in the following two steps [2]. The first
step creates a set of preliminary authorization rulesPA; PA is a rule set defined as the
union ofΓ andDΓ , whereDΓ contains all rules derived fromΓ by using the hierarchy
semantics defined in this system. The second step processes access requestα according
to PA.

141



The hierarchy semantics of E-P3P is defined as follows [2]:

• Down-inheritance: For each rule(i, t, p, u, r, a, o, c) ∈ PA, for every(t′, p′, u′)
such thatt′ ≤T t, p′ ≤P p, andu′ ≤G u, a tuple(i, t′, p′, u′, r, a, o, c) is added to
PA.

• Up-inheritance of deny (negative authorization): For each rule(i, t, p, u,−, a, o, c) ∈
PA, for every (t′, p′, u′) such thatt ≤T t′, p ≤P p′, and u ≤G u′, a tuple
(i, t′, p′, u′−, a, o, c) is added toPA.

In this system, if contradicting policy rules coexist,denies-take-precedencewill be
applied to remove contradicting policy rules with lower precedences fromPA.

We can identify two problems existing in this system. The first problem is that the
concept ofpermission inheritanceis omitted. As a consequence, the system is not flex-
ible in practice. For example, it provides no mechanism for enforcingstrict permission
inheritance. The second problem is that the definition ofup-inheritance of denyis rea-
sonless. The first problem is apparent; here we will give an example that reveals the sec-
ond problem. Following the semantics ofup-inheritance of deny, some reasonable re-
quests from users are denied. Let us consider the following scenario. There is a primitive
categoryBMW ad.wav (TH.y9 in figure 1) in the category ofmultimedia(TH.y2 in fig-
ure 1), besides we assume thatGH.y6 is useru andPH.y3 is a purpose. There are two
policy rules inΓ , i.e.Γ = {γ1, γ2}; γ1 = (1, TH.y7, PH.y3, GH.y6,−, read, null, null),
γ2 = (1, TH.y2, PH.y3, GH.y6,+, read, null, null). Now there is an access request
from useru: α = (TH.y9, PH.y3, GH.y6, read, null, null); i.e. useru requests to
readBMW ad.wav for the purpose ofPH.y3 with no specified condition and obligation.
BecauseTH.y7 ≤T TH.y2 (see figure 1),PH.y3 ≤P PH.y3 andGH.y6 ≤G GH.y6,
following up-inheritance of deny, there will be a policy ruleγ3 derived fromγ1: γ3 =
(1, TH.y2, PH.y3, GH.y6,−, read, null, null), that is useru is not allowed to read
multimediafor the purpose ofPH.y3. ThenPA = Γ ∪ {γ3}, i.e.PA = {γ1, γ2, γ3}
(here we skip other derived rules). The two policy rulesγ2 andγ3 are contradicting
policy rules. Because of denies-take-precedence, the ruleγ2 will be removed fromPA,
now PA = {γ1, γ3}. The system will validateα according toPA = {γ1, γ3}, hence
according toγ3, useru’s requestα is denied.

5 Solution

This section presents the hierarchy semantics defined in our generalizedPSS. The
semantics described below eliminates the problems mentioned in section 4 and extends
the hierarchy semantics of GRBAC and E-P3P.

5.1 Hierarchy Semantics

Our interpretation of the concept of hierarchy is such that the relationship between a
descendant element and its ancestor element isin the category of. The common ratio-
nale is that when an authorization is applied on an ancestor element (superior category),
this authorization may also be applied to its descendant elements (inferior categories)

142



implicitly. As a consequence, authorizations propagate downwards (¯ and⊗ authoriza-
tions do not propagate; the termauthorizationin this sub-section denotes authorizations
other than̄ and⊗ authorizations). We only consider authorization propagations be-
tween parents and children here; any complex authorization propagation is an aggrega-
tion of such simple propagations. In a hierarchy, two different types of elements must
be clearly distinguished.Pure elementis an element that has only one parent;hybrid
elementis an element that has more than one parents. Based on these two types of ele-
ments, two different situations of down-propagation of authorizations can be identified.

• If a child is a pure element, all authorizations of its parent propagate down.
• If a child is a hybrid element, the hierarchy semantics is complicated. There are

many options that represent different strictness of authorization propagation. These
options are listed as follows.
(a) Strict down-propagation: SSO defines a combination of elements calledStrict

Combination(SC). For a childy, if ∃yj ∈ Psety such thatyj ∈ SC, then
the authorization propagation fromy’s parents toy will follow the semantics
of strict down-propagation. We define a setSCy = {yi : yi ∈ Psety and
yi ∈ SC}. The semantics of strict down-propagation is as follows.

i. All (implicit) negative authorizations of elements inPsety\SCy propagate
down toy; all other authorizations of elements inPsety propagate down
to y iff ∀yi ∈ SCy such thatFAyi

.ruling = + (or⊕).
(b) Lenient down-propagation: SSO defines a combination of elements calledLe-

nient Combination(LC). For a childy, if ∃yj ∈ Psety such thatyj ∈ LC
and¬∃yk ∈ Psety such thatyk ∈ SC (for security concern, strict down-
propagation overrides lenient down-propagation), then the authorization propa-
gation fromy’s parents toy will follow the semantics of lenient down-propagation.
We define a setLCy = {yi : yi ∈ Psety andyi ∈ LC}. The semantics of
lenient down-propagation is as follows.

i. If ¬∃yi ∈ LCy such thatFAyi
.ruling = + (or ⊕), all authorizations of

elements inPsety propagate down toy.
ii. If ∃yi ∈ LCy such thatFAyi

.ruling = + (or ⊕), all authorizations of
elements in{yk : yk ∈ Psety andFAyk

.ruling = + (or⊕)} propagate
down toy.

(c) Standard down-propagation: For a childy, if ¬∃yj ∈ Psety such thatyj ∈ LC
and¬∃yk ∈ Psetv such thatyk ∈ SC, then the authorization propagation
from y’s parents toy will follow the semantics of standard down-propagation.
The semantics of standard down-propagation is as follows.

i. All authorizations ofy’s parents propagate down toy.

The semantics described above generalizes the hierarchy semantics in GRBAC and
E-P3P.The strict permission inheritance defined in GRBAC (section 4.1) is a special
case of our definition of strict down-propagation where∀yi ∈ Psety, yi ∈ SC. The
lenient permission inheritance defined in GRBAC (section 4.1) is a special case of our
definition of lenient down-propagation where∀yi ∈ Psety, yi ∈ LC. The proposed
hierarchy semantics also eliminates the questionable semantics in GRBAC and E-P3P. If
our strict down-propagation is applied in the examples shown in section 4.1 and section
4.2, the reasonable access requests will be approved. The semantics of up-inheritance
of deny (section 4.2) is incorrect; hence in our hierarchy semantics it is not included.

143



5.2 Scenarios of the Use of Hierarchy Semantics

This section shows some examples of using the hierarchy semantics defined in this
paper. In these examples, we assume authorization conflicts are resolved automatically.
Due to limited space, the examples of down-propagation to a pure element and standard
down-propagation are not included in this paper.

Fig. 2. Example strict down-propagation of object hierarchy

Figure 2 shows two examples of strict down-propagation. In the first example, a
primitive categoryjingle.mp3 (y3) enters two categories:classified file(y1) andMP3
file (y2). In this case, SSO wants to be strict to accesses to elements entering category
y1. SSO definesSC = {y1}. BecauseFAy1 .ruling = +, FAy1 propagates down
to y3: A1

y3
= (⊕, 1). A1

y3
is the only authorization thaty3 has, henceFAy3 = A1

y3
.

In the second example, a primitive categoryJack′s credit history (y3) enters two
categories:sensitive information(y1) andprivate information(y2). SSO wants to be
strict to accesses to elements enteringy1 or y2. SSO definesSC = {y1, y2}. Because
FAy1 .ruling = + andFAy2 .ruling = +, FAy1 andFAy2 propagate down toy3.
After conflict resolution,FAy3 = (⊕, 2).

Fig. 3. Example lenient down-propagation of object hierarchy

An example of lenient down-propagation is shown in figure 3. SSO wants to be
lenient to those who are allowed to accessemergency information(y1), becauseemer-
gency informationis often related to vital event. SSO definesLC = {y1} and we

144



assumeSC = ∅. Then even if the other parenty2 of patient allergic history(y3) is
denied access,y3 is still accessible to those who are allowed to accessy1.

6 Conclusion and Future Work

PSSs are capable of expressing and enforcing rich data protection policies. GRBAC
and E-P3P are representatives of such systems. In GRBAC and E-P3P, hierarchy is an
important and widely used concept. Being an inseparable part of hierarchy, hierarchy
semantics defines rules of authorization propagation. In this paper, we have proposed
a generalizedPSS that covers GRBAC and E-P3P. Based on this generalizedPSS,
we analyze the hierarchy semantics used in GRBAC and E-P3P. We point out errors
and limitations of GRBAC and E-P3P hierarchy semantics. Finally, we present new
hierarchy semantics to address the problems discovered.

In the future, the following research work interests us:

• finding more useful hierarchy semantics.
• investigating efficient access request processing mechanisms.
• reviewing other related work such as access control for XML document etc.

References

1. Moyer, M.J., Ahamad, M.: Generalized role-based access control. In: Proceedings of 21st
International Conference on Distributed Computing Systems. (2001) 391–398

2. Ashley, P., Hada, S., Karjoth, G., Schunter, M.: E-P3P privacy policies and privacy authoriza-
tion. In: Proceeding of the ACM workshop on Privacy in the Electronic Society, ACM Press
(2002) 103–109

3. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST stan-
dard for role-based access control. ACM Transactions on Information and System Security
(TISSEC)4 (2001) 224–274

4. Moffett, J.D.: Control principles and role hierarchies. In: Proceedings of the third ACM
workshop on Role-based access control, ACM Press (1998) 63–69

5. Sandhu, R.: Role activation hierarchies. In: Proceedings of the third ACM workshop on
Role-based access control, ACM Press (1998) 33–40

6. Joshi, J.B.D., Bertino, E., Ghafoor, A.: Hybrid role hierarchy for generalized temporal role
based access control model. In: Proceedings of 26th Annual International Computer Software
and Applications Conference. (2002) 951–956

7. Moffett, J.D., Lupu, E.C.: The uses of role hierarchies in access control. In: Proceedings of
the fourth ACM workshop on Role-based access control, ACM Press (1999) 153–160

8. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for multiple
access control policies. ACM Transactions on Database Systems (TODS)26 (2001) 214–260

145


