A Generalized Policy Support System and
Its Hierarchy Semantics

Yibing Kong, Janusz R. Getta, Ping Yu, and Jennifer Seberry

School of Information Technology and Computer Science,
University of Wollongong,
Wollongong, NSW, Australia

Abstract. One common characteristic of maRglicy Support Systen{®SSs)

is their dependency on the concepthiérarchy Hierarchy does not need to be
limited to a hierarchy of roles (subject centric) as in traditional Role-Based Ac-
cess Control (RBAC). Instead, it can be applied to other aspe@sSdf such as
object, environment, purpose and so on. In this paper, we propose a new general-
ized model forPSS. The model unifies Generalized Role-Based Access Control
(GRBAC) and Enterprise Privacy Practices (E-P3P) policy support systems and
generalizes their hierarchy semantics.

Keywords: Access Control, Hierarchy, Hierarchy Semantics

1 Introduction

Organizations must enforce data protection policies to secure data collected and gen-
erated during their daily operational procedures. At a conceptual level, data protection
polices are expressed as sequences of statements written in a natural language. In the
past, the enforcement of data protection policies was based on manual work or inflexible
mechanisms such as Discretionary Access Control (DAC), Mandatory Access Control
(MAC) models. The emerge of Role-Based Access Control (RBAC) model improved
efficiency of data protection. Unfortunately, RBAC model is still not expressive enough
to efficiently and effectively enforce more sophisticated data protection policies in an
organization. Recently more powerful systems have appeared; Generalized Role-Based
Access Control (GRBAC) [1] and Enterprise Privacy Practices (E-P3P) [2] are repre-
sentatives of such systems.

GRBAC, proposed by Moyer and Ahamad in [1], is an extension of traditional
RBAC. It generalizes the classical conceptraie through the new concepts such as
subject role pbject roleandenvironment roleThese concepts are used to structure the
subjects (users), objects (data) and environments (conditions). With these new types of
roles, GRBAC is capable of creating rich access control policies. GRBAC provides an
algorithm to enforce the access control policies defined in the model. E-P3P, developed
by Ashleyet al.in [2], has a well-defined privacy architecture and semantics. It enables
an organization to express its privacy policies in E-P3P format and to enforce the poli-
cies automatically. We shall call these two systemBa@iy Support Systenf®SSs)
because they are designed for expressing and enforcing data protection policies.

Kong Y., R. Getta J., Yu P. and Seberry J. (2004).

A Generalized Policy Support System and Its Hierarchy Semantics.

In Proceedings of the 2nd International Workshop on Security in Information Systems, pages 136-145
DOI: 10.5220/0002667301360145

Copyright © SciTePress

137

A hierarchyis a partial order on a set of elements that defines a seniority relationship
between elements [3]. Hierarchy is not a new concept, it has been extensively studied
in the pastRole hierarchy{4—7] in role-based access control dmdrarchyin Flexible
Authorization Framework (FAF) [8] are examples of such studies. Hierarchy semantics
is an inseparable part of hierarchy that defines rules of authorization propagation. Var-
ious hierarchy semantics was defined in GRBAC and E-P3P. However, the hierarchy
semantics defined is either incomplete or incorrect. In this paper, we propose a gener-
alizedPSS model that covers GRBAC and E-P3P. Based on this model, the hierarchy
semantics of GRBAC and E-P3P is analyzed. We propose new hierarchy semantics to
solve the problems encountered in GRBAC and E-P3P.

The organization of the rest of the paper is as follows. Section 2 introduces the con-
cept of hierarchy. A generalizegdSS is proposed in section 3 and hierarchy semantics
of GRBAC and E-P3P is analyzed in section 4. Section 5 presents new hierarchy se-
mantics. Finally, in section 6, we conclude the paper and outline the plans of future
research.

2 Definition of Hierarchy

A mathematical structure callddlerarchywas defined by Jajodiet al.in [8] as a triple
(X,Y, <), whereX is the set oprimitive entities e.g. a user, an objed; is the set of
categoriese.g. a group, an object typ€; is a partial order ofiX UY") such that each

x € X isaminimal elemendf (XUY); an element € X is said to be minimal iff there

are no elements below it in the hierarchy, that isfiffe (X UY):y <z =y ==

This definition is rich enough to capture all hierarchy structures presented in [1, 2]. We
simplify this definition of hierarchy to a two-entry tup(, <), i.e. H = (Y, <) where:

e Y is the set of categories, such that a primitive entity is treated as a category of
itself, calledprimitive category A primitive category contains one primitive en-
tity and the name of the category is the same as the name of the primitive entity.
For example a primitive entityjames Bondbelongs to a primitive category called
James Bond.

e <isapartial order or” such that each primitive category¥his a minimal element
of Y.

In addition, we define the following two binary relations ouér The first binary
relation < describeslescendant-ancestaoelationship between the elementsyn If
vi,y; € Y andy; < y;,y; is said to be the ancestor gf y; is said to be the descendant
of y;. The relationy; < y; is interpreted ag; is in the category of;. For an element
y;, a set of all its ancestors is definedAset,, = {yx : yx € Y andy; < yx}; a set
of all its descendants iBset,, = {yx : yr € Y andy, < y;}. The second binary
relation<© describeshild-parentrelationship between elements¥n If Yi,y; €Y
andy; <¢ y;, ¥; IS said to be the parent gf; y; is said to be the child of;. For an
elementy;, a set of all its parents is defined Bset,, = {y; : yx € Y andy; <€ yi};

a set of all its children i€'set,, = {yx : yx, € Y andyy <%y}

Some of the hierarchies used in practice are listed as foll@ubject hierarchy

GH = (G, <¢) whereG is a set of groups (roles¥, defines hierarchy relationships

138

between groups idz. Object hierarchyT' H = (T, <) whereT is a set of types,
<r defines hierarchy relationships between types.iEnvironment hierarchyg H =
(E, <g)whereE is a set of environments; i defines hierarchy relationships between
environments inE. Purpose hierarchyPH = (P, <p) whereP is a set of purposes,
<p defines hierarchy relationships between purposés in

3 A Generalized Model of a Policy Support System

It is common for aPSS to define more than one hierarchies. For example, GRBAC
[1] definesGH, TH and EH hierarchies and E-P3P [2] definésH, TH and PH
hierarchies. Furthermore these systems define some sets of elements, such as the set
of actions, the set of obligations, the set of authorization types etc. In this section, we
define a generalized model which unifies GRBAC and E-P3P.

A generalizedPolicy Support SysteSS = (H, S, A, R, P), where:

‘H denotes a set of hierarchiesH, ..., H,,n > 1.

S is a set ofm setsSy, ..., S,,, wherem > 0. The sets defined i§ provide ad-

ditional restrictions orPSS; for example the sets of obligations and conditions in

E-P3P system are instances of such sgis.optional and its existence depends on

the designer of #SS, e.g. in GRBACS is absent.

e Ais a set of actions to be performed on data.

e R is a set of authorization types (rulingsk. = {+,—, ®,9,®,®}, where+
meanspositive authorization— meansnegative authorization meansimplicit
positive authorization© meansimplicit negative authorization® meansautho-
rization pendingand ® meansno authorization + and — are used for explicit
authorization assignment through policy rulesandc are used for authorization
propagation is used for conflicts resolutiom® is used when none of the above
five rulings is applicable.

e Pis a set of precedences over policy rulBs= Z, i.e. P is the set of integers that

determines precedence orders over a set of policy rules; the greater number denotes

the higher precedenc®. is also optional; the absence Bfmeans that all policy

rules have the same precedence.

The elements of the above five parts are used as basic units to form policy rules. The
collection of all the policy rules in #SS is a policy rule set, denoted d& A policy

ruley € I'isatuple(Ye, , ..., YH, , VSys - VS, s YA, YR, VP) Where

vu, € H; orvyy, = null (i.e. nothing is specified foyy,), wheren > i > 1.

vs, € S; orvyg, = null, wherem > i > 0.

v4 € A s the action entry that specifies the action to be performed.

vr € {+, —} is the ruling entry that specifies either positive or negative authoriza-
tion.

e vp € P is the precedence of

139

It is possible to show that the model defined above “includes” GRBAC [1] and
E-P3P [2]. A GRBAC system is a tripléH, A,R), whereH = {GH,TH,EH}
(GH is subject hierarchy]'H is object hierarchy and?H is environment hierar-
chy). A GRBAC policy rule [1] is a tupl€sS, O, E, op, permission bit, whereS €
GH,0 € TH,E € FEH,op € A andpermission bitc {+,—}. There is no prece-
dence over GRBAC policy rules, hence the’Bas absent. An E-P3P system is a tuple
(H,S, A, R,P), whereH = {GH,TH,PH},S = {O,C} (GH is subject hierarchy,
TH is object hierarchyP H is purpose hierarchy) is the set of obligations an@ is
the set of conditions). An E-P3P policy rule [2] is a tuglet, p, u, r, a,0,¢), inside
whichi € P,t e TH,p € PH,u € GH,r € {+,-},a € A;5 € O andc € C.

According to the definition of a policy rule, eaccess request can be expressed
asa = (amg,,...,omH, ,08,, ..., g, ,a4) Whereay, € H; of ay, = null,n > i > 1;
ag, € S;0ras, = null, m > i > 0; ag € A. A set of policy rulesl, is used
to validatea, wherel, C I'. All policy rules in I, are calledmatching rulesof «.
Matching rules must satisfy the following properties:

o Vyely,, a, <vyg,, Wwheren >i > 1.
o Vyel,,vs, = as,, wherem > i > 0.
o Vv €Ty, Y4 =ay.

The validation ofw in I, consists ofn sub-validations fromg, to ag, . Thatis,
Vag, € awheren > i > 1, ay, needs to be validated according to the matching rule
setl’, whetheray, is authorized forv 4. If and only if all of these hierarchy elements
are authorized fotv 4, « is granted.

Vy € Lo, Wherey = (Yay, oo, YH, s YS1s - VS s YA, YR, VP), WE CaN assign a
tuple (yg,vp) to vu,, ..., vm, . An authorizationof an elementy € H is a tuple
(ruling, precedence) inside whichruling € R, precedence € P; it is denoted as
A; where: is the index of the authorization. Due to the optional propertyPothe
precedence entry of an authorization is also optional. The ruling entﬁ)Z of denoted
as A} .ruling and the precedence entry df is denoted asl} .precedence. We call
an authorization explicitly defined by policy rulegplicit authorization obviously for
an explicit authorizatio, A.ruling € {+, —}. Authorization may also be derived by
hierarchy semantics, we call a derived authorizatroplicit authorization for an im-
plicit authorizationA, A.ruling € {®, &}. If an explicit authorization4?1ﬁ ofy, e H
propagates t@; € H, thenA;i is converted to an implicit authorizatioAl;j by the
following processes: ifi; .ruling = +, then A, .ruling = ®; if A} .ruling = —,
thenAzl]j ruling = ©; Azllj .precedence = Azln .precedence.

Here is an example of assigning explicit authorizations, asstime= {v1,7v2};
"= (7 Y1H;s - Tead? +,]-)1 V2 = (7 Y2H; 5 -+ read, Rl 2)1 WhererHi = Y2H; =
y € H;; thenA, = (+,1), A2 = (—,2). Two authorizationsd},, A/ areinequable
if either Aé.ruling #* A‘{;.ruling or A;.precedence =+ Ai .precedence holds. When
an element of a hierarchy has more than one inequable authorizations, conflicts arise.
Our system provides methods of conflicts resolution, cadlgithorization precedence
policy. In our system, conflicts can be solved eith@anuallyor automatically For a
hierarchyH; = (Y;, <;), theSystem Security Officé€8SO) defines manual resolution
setMR; C Y. If an elementy € M R; has authorization conflicts, we assigmwvith

140

the authorizatiof®,). In this case, the decision of the access requehat causes the
conflicts will be pending until the conflicts are manually solved by SSO. If an element
y € Y; \ MR, has authorization conflicts, these conflicts are solved automatically by
the following rules.

e (© authorizations are with the highest precederngeguthorizations are with the
lowest precedence. There are no maximum and minimum integé&rshance the
precedence entries of these two types of authorizations are absent. An authorization
with higher precedence overrides authorizations with lower precedences.

o If the precedences are the sardenies-take-precedenedll apply. The priority
order is:—, &, 4+, ®. An authorization with higher priority order overrides autho-
rizations with lower priority orders.

Our authorization precedence policy is very flexible. Authorization pending gives
SSO opportunities to review authorization conflicts. By doing that, SSO may find bugs
of I and give user better response. After we perform all authorization derivations and
conflicts resolutions oif;, H;'s final authorization statés obtained, whergy € H;,

y has dfinal authorizationF’ A, that is not conflicting. The result of the sub-validation
of ap, is FAqy,, .ruling. The decision oty is processed as follows.

o If VFA,, .ruling =+ (or®) wheren > i > 1, thena is approved.
o If IFA,, .ruling = — (or & or ®), thena is denied.
e If awis not denied andF' A,,,, .ruling = ®, thena is pending.

4 Hierarchy Semantics of GRBAC and E-P3P

Hierarchy semantics defines rules of authorization propagation. In this section, the hi-
erarchy semantics of GRBAC and E-P3P is depicted.

4.1 Hierarchy Semantics of GRBAC

The hierarchy semantics in GRBAC [1] is defineddg®rmission inheritancelhere are
three types of permission inheritancetandard strict andlenient Suppose we have
an access request= (agy,ary, agH,), Whereagy = y4 € GH, denoted as
GH.y4, arg = TH.ys andagy = EH.ys. Here we utilize the validation af H.y,
to illustrate the semantics of the three types of permission inheritances.

e Standard permission inheritance
If 3y; € Asetqu.y,U{GH.ys} suchthatr'A,, .ruling = +and—-3y; € Asetgm.,,U
{GH.ys} such thatF' A, .ruling = —, thenG H.y, is authorized forx 4. Other-
wise, it is not authorized foti 4.

e Lenient permission inheritance
If 3y, € Asetgu.,, U {GH.ys} such thatF'A,, .ruling = +, thenGH.y, is
authorized forx 4. Otherwise, it is not authorized far 4.

e Strict permission inheritance
If Yy, € Asetgu.y, U{GH.ys} such thatF'A,, .ruling = +, thenGH.y, is
authorized for 4. Otherwise, it is not authorized far 4.

141

MP3 file
Y,

yS ytj
jingle.mp3 BMW_ad.wav

Fig. 1. Example object hierarchyy H

An example below illustrates the hierarchy semantics of GRBAC. Consider the
object hierarchyl’H shown in figure 1; there are 9 elementsTit/, among which
jingle.mp3 (ys) iS a primitive category that is a child efassified file(y,) andMP3
file (y7). Now there is an access requesfrom useru (we assume is yg in GH) to
readjingle.mp3 (T H.ys) under environment (we assume is y; in EH), i.e.a =
(GH.ys, TH.ys, EH.y1, read). The policy rule sel” = {v1,v2}; 1 = (GH.ys, TH.y4,
EH.yi,read,+), 2 = (GH.ys, TH.y;, EH.y1,read,+). Obviously, the matching
rule setl’, = I'. According to GRBAC hierarchy semantics, we can derive thedn
readjingle.mp3 if standard or lenient permission inheritance is appliedannot read
it if strict permission inheritance is applied.

The original intention of strict permission inheritance is to restrict accesses to the
elements in the category of sensitive/vulnerable categories defined by SSO. GRBAC's
strict permission inheritance is trying to fulfill this intention. However this definition
is too strict to be practical. In the example above, usés explicitly authorized to
read bottclassified fileandMP3 fileand there is no policy rule disallow these accesses
(as shown in the exampl€ above). In this case, even if we are very strict, user
should have read accessitingle.mp3, which is a child ofclassified fileandMP3 file
GRBAC will deny this access because GRBAC's strict permission inheritance requires
the requested element and all its ancestors to be explicitly authorized for the access;
obviously this is too strict. If a system deploys this strict permission inheritance, few
access requests can be granted.

4.2 Hierarchy Semantics of E-P3P

In E-P3P, an access requests processed in the following two steps [2]. The first
step creates a set of preliminary authorization rites P A is a rule set defined as the
union ofI"and DI, whereDI" contains all rules derived frorfi by using the hierarchy
semantics defined in this system. The second step processes accessraquesiing

to PA.

142

The hierarchy semantics of E-P3P is defined as follows [2]:

e Down-inheritance: For each rulg, ¢, p,u,r,a,0,¢) € PA, for every(t',p’,u’)
such that’ <r t, p’ <p p, andu’ <g u, atuple(i,t’,p’,u’,r, a,0,¢) is added to
PA.

e Up-inheritance of deny (negative authorization): For each(iutep, u, —, a,0,¢) €
PA, for every (¢,p',u’) such thatt <r t/, p <p p/, andu <g u/, a tuple
(i,t',p',u'—, a,0,¢) is added taP A.

In this system, if contradicting policy rules coexidgnies-take-precedenwéll be
applied to remove contradicting policy rules with lower precedences ffeim

We can identify two problems existing in this system. The first problem is that the
concept ofpermission inheritances omitted. As a consequence, the system is not flex-
ible in practice. For example, it provides no mechanism for enforsirigt permission
inheritance The second problem is that the definitionugf-inheritance of denis rea-
sonless. The first problem is apparent; here we will give an example that reveals the sec-
ond problem. Following the semantics @f-inheritance of denysome reasonable re-
quests from users are denied. Let us consider the following scenario. There is a primitive
categoryBMW_ad.wav (T'H.yg in figure 1) in the category ahultimedia(T' H.ys in fig-
ure 1), besides we assume tltal .y is useru and P H.y3 is a purpose. There are two
policyrulesinl,i.e.I" = {~v1,v2};v1 = (1,TH.y;, PH.ys, GH.ys, —, read, null, null),
Yo = (1,TH.ys, PH.ys, GH.yg, +, read, null,null). Now there is an access request
from useru: « = (T'H.yg, PH.ys, GH.ys, read, null, null); i.e. useru requests to
readBMW_ad.wav for the purpose of? H.y3 with no specified condition and obligation.
Becausd'H.y; <p TH.y, (seefigure 1)PH.y3 <p PH.y; andGH.ys < GH.ys,
following up-inheritance of deny, there will be a policy rujle derived from~y;: 3 =
(1,TH.ys, PH.ys, GH.yg, —, read, null,null), that is usen is not allowed to read
multimediafor the purpose oPH.ys. ThenPA = ' U {73}, i.e. PA = {71,72,73}
(here we skip other derived rules). The two policy rulgsand~s; are contradicting
policy rules. Because of denies-take-precedence, theswadl be removed fromP A,
now PA = {v1,73}. The system will validatex according toPA = {v1,v3}, hence
according toys, useru’s requesty is denied.

5 Solution

This section presents the hierarchy semantics defined in our gener@&8d The
semantics described below eliminates the problems mentioned in section 4 and extends
the hierarchy semantics of GRBAC and E-P3P.

5.1 Hierarchy Semantics

Our interpretation of the concept of hierarchy is such that the relationship between a
descendant element and its ancestor elementtise category of The common ratio-

nale is that when an authorization is applied on an ancestor element (superior category),
this authorization may also be applied to its descendant elements (inferior categories)

143

implicitly. As a consequence, authorizations propagate downwardsd® authoriza-

tions do not propagate; the teamthorizationin this sub-section denotes authorizations
other than® and® authorizations). We only consider authorization propagations be-
tween parents and children here; any complex authorization propagation is an aggrega-
tion of such simple propagations. In a hierarchy, two different types of elements must
be clearly distinguished?ure elements an element that has only one pardmntbrid
elemenis an element that has more than one parents. Based on these two types of ele-
ments, two different situations of down-propagation of authorizations can be identified.

e If a child is a pure element, all authorizations of its parent propagate down.
e If a child is a hybrid element, the hierarchy semantics is complicated. There are
many options that represent different strictness of authorization propagation. These

options are listed as follows.
(a) Strict down-propagationSSO defines a combination of elements cafidlct

Combination(SC). For a childy, if Jy; € Pset, such thaty; € SC, then
the authorization propagation frogs parents tay will follow the semantics
of strict down-propagation. We define a s&t'y, = {y; : v; € Pset, and

y; € SC}. The semantics of strict down-propagation is as follows.
i. All (implicit) negative authorizations of elementsitset, \ SC, propagate

down toy; all other authorizations of elements itset, propagate down
toy iff Vy; € SC, such thatF’'A,, .ruling = + (or ®).
(b) Lenient down-propagatior8SO defines a combination of elements called

nient Combination(LC). For a childy, if Jy; € Pset, such thaty; € LC
and—-3Jy, € Pset, such thaty, € SC (for security concern, strict down-
propagation overrides lenient down-propagation), then the authorization propa-
gation fromy’s parents tg, will follow the semantics of lenient down-propagation.
We define a seLC, = {y; : y; € Pset, andy; € LC}. The semantics of

lenient down-propagation is as follows.
i. If -3y; € LC, such thatF'A,,.ruling = + (or @), all authorizations of

elements inPset, propagate down tg.
ii. If 3y; € LC, such thatF'A,, .ruling = + (or @), all authorizations of
elements iy, : yx € Pset, andFA,, .ruling = + (or ¢)} propagate

down toy.
(c) Standard down-propagatiofror a childy, if -3y; € Pset, suchthay; € LC

and -3y, € Pset, such thaty, € SC, then the authorization propagation
from y’s parents tay will follow the semantics of standard down-propagation.

The semantics of standard down-propagation is as follows.
i. All authorizations ofy’s parents propagate down $o

The semantics described above generalizes the hierarchy semantics in GRBAC and
E-P3P.The strict permission inheritance defined in GRBAC (section 4.1) is a special
case of our definition of strict down-propagation wheig € Pset,,y; € SC. The
lenient permission inheritance defined in GRBAC (section 4.1) is a special case of our
definition of lenient down-propagation whevg; € Pset,,y; € LC. The proposed
hierarchy semantics also eliminates the questionable semantics in GRBAC and E-P3P. If
our strict down-propagation is applied in the examples shown in section 4.1 and section
4.2, the reasonable access requests will be approved. The semantics of up-inheritance
of deny (section 4.2) is incorrect; hence in our hierarchy semantics it is not included.

144

5.2 Scenarios of the Use of Hierarchy Semantics

This section shows some examples of using the hierarchy semantics defined in this
paper. In these examples, we assume authorization conflicts are resolved automatically.
Due to limited space, the examples of down-propagation to a pure element and standard
down-propagation are not included in this paper.

Classified file MP3 file Sensitive information Private information

(+, 1) Y, (+, 1) Y,

(9, 1) Y, (®,2) @Y,
jingle.mp3 Jack’s credit history

Fig. 2. Example strict down-propagation of object hierarchy

Figure 2 shows two examples of strict down-propagation. In the first example, a
primitive categoryjingle.mp3 (y3) enters two categorieslassified filgy;) andMP3
file (y2). In this case, SSO wants to be strict to accesses to elements entering category
y1. SSO definesSC' = {y,}. BecauseF'A,, .ruling = +, F'A,, propagates down
toys: Ay, = (@,1). A is the only authorization thajs has, hence’A,, = A} .
In the second example, a primitive categdaek’s credit history (y3) enters two
categoriessensitive informatior{y;) and private information(y2). SSO wants to be
strict to accesses to elements entetin®@r y». SSO define$C' = {y1,y-}. Because
FAy, ruling = + andFA,, .ruling = +, FA,, andF A,, propagate down tgs.
Atfter conflict resolutionF'A,, = (©,2).

Emergency information Patient record
(*,1) Y,

(®, 1)@,

Patient allergic history

Fig. 3. Example lenient down-propagation of object hierarchy

An example of lenient down-propagation is shown in figure 3. SSO wants to be
lenient to those who are allowed to accessergency informatiofy,), becausemer-
gency informationis often related to vital event. SSO definB€' = {y;} and we

145

assumeSC = (. Then even if the other parept of patient allergic history(ys) is
denied accesg; is still accessible to those who are allowed to acggss

6 Conclusion and Future Work

PSSs are capable of expressing and enforcing rich data protection policies. GRBAC
and E-P3P are representatives of such systems. In GRBAC and E-P3P, hierarchy is an
important and widely used concept. Being an inseparable part of hierarchy, hierarchy
semantics defines rules of authorization propagation. In this paper, we have proposed
a generalized?SS that covers GRBAC and E-P3P. Based on this generalR88,
we analyze the hierarchy semantics used in GRBAC and E-P3P. We point out errors
and limitations of GRBAC and E-P3P hierarchy semantics. Finally, we present new
hierarchy semantics to address the problems discovered.

In the future, the following research work interests us:

¢ finding more useful hierarchy semantics.
e investigating efficient access request processing mechanisms.
e reviewing other related work such as access control for XML document etc.

References

1. Moyer, M.J., Ahamad, M.: Generalized role-based access control. In: Proceedings of 21st
International Conference on Distributed Computing Systems. (2001) 391-398

2. Ashley, P., Hada, S., Karjoth, G., Schunter, M.: E-P3P privacy policies and privacy authoriza-
tion. In: Proceeding of the ACM workshop on Privacy in the Electronic Society, ACM Press
(2002) 103-109

3. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST stan-
dard for role-based access control. ACM Transactions on Information and System Security
(TISSEC)4 (2001) 224-274

4. Moffett, J.D.: Control principles and role hierarchies. In: Proceedings of the third ACM
workshop on Role-based access control, ACM Press (1998) 63-69

5. Sandhu, R.: Role activation hierarchies. In: Proceedings of the third ACM workshop on
Role-based access control, ACM Press (1998) 33-40

6. Joshi, J.B.D., Bertino, E., Ghafoor, A.: Hybrid role hierarchy for generalized temporal role
based access control model. In: Proceedings of 26th Annual International Computer Software
and Applications Conference. (2002) 951-956

7. Moffett, J.D., Lupu, E.C.: The uses of role hierarchies in access control. In: Proceedings of
the fourth ACM workshop on Role-based access control, ACM Press (1999) 153-160

8. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for multiple
access control policies. ACM Transactions on Database Systems (TZB)E)01) 214—-260

