
A Service Discovery Infrastructure for Heterogeneous
Wired/Bluetooth Networks?

Elena Pagani, Stefano Tebaldi, and Gian Paolo Rossi

Computer Science Dept., Università degli Studi di Milano

Abstract. Specifications of some applications based on the Bluetooth protocol
stack have already been standardized by the Bluetooth Special Interest Group.
Those applications can however be accessed inside a piconet, while Bluetooth
devices belonging to different piconets are not able so far of cooperating in a
distributed application. In this paper, a framework is proposed that allows a Blue-
tooth device to search for services provided by other devices, also in case they
are connected to different piconets that communicate through a wired network.
The proposed framework has been implemented on a testbed platform and its
suitability has been tested by using it to distribute a file transfer service over a
heterogeneous network.

Keywords: Bluetooth, heterogeneous networks, service discovery and access,
testbed deployment.

1 Introduction

The Bluetooth technology [1,2] has been designed with the purpose of replacing ca-
bling amongst neighbor devices, for instance to connect computers and mobile phones
to external devices and accessories via wireless links. Ongoing standardization of Blue-
tooth makes it an interesting solution to rapidly deploy wireless infrastractures using
low cost, easily available devices such as PDAs, notebooks and cellular phones.

Application characteristics have been specified [2], that allow to deploy distributed
services based on the Bluetooth protocol stack. Those applications are not compliant
with the TCP/IP protocol stack and so far they can involve only Bluetooth devices
(BDs) belonging to the same piconet. The usage of those services is supported by the
Service Discovery Protocol (SDP), which allows to discover information about how to
configure the Bluetooth protocol stack to interoperate with another device; SDP is only
usable inside a given piconet. As a consequence, a BD is not able to establish a session
with a remote BD connected to a different piconet.

This work presentsBSDA (Bluetooth Service Discovery and Access), an infrastruc-
ture that supports communication sessions between two BDs belonging to different
piconets that are connected through a wired network. An extension of SDP is proposed

? This work has been partially supported by the Italian Ministry of Education, University and
Research in the framework of the FIRB ”Web-Minds” project.

Pagani E., Tebaldi S. and Paolo Rossi G. (2004).
A Service Discovery Infrastructure for Heterogeneous Wired/Bluetooth Networks.
In Proceedings of the 1st International Workshop on Ubiquitous Computing, pages 170-179
DOI: 10.5220/0002671301700179
Copyright c© SciTePress



that allows a BD to retrieve information about the services available on other BDs, in-
dependently of their current location, and about the protocol stack configuration needed
to exploit those services. This extension includes mechanisms to deal with BDs dynam-
ically changing the piconet to which they are connected over time.

2 Related works

In literature, some infrastructures have been proposed that provide device and service
location functionalities.

Service Location Protocol(SLP) [3] has been proposed by the IETF to discover the
services available in an intranet. It supplies the IP address and port number of the hosts
providing the service. It is suitable for wired networks, while supporting host (and thus,
service) mobility involves a large control overhead to update the location information.
SLP supports the discovery of services defined by IANA and identified by a URL, and
it is based on the TCP/IP protocol stack.

JINI [4] allows to access Java programs, or Java applications supplied by devices
running a JVM. The service discovery is performed by multicasting a request to lookup
servers. The service is accessed by downloading from a lookup server the Java code
either implementing the service, or implementing the interface to communicate with
the remote server.

Salutation[5] supports service and device discovery and access in presence of
highly mobile system participants. Salutation is independent of underlying communi-
cation protocols and end host architectures, but for each transport protocol adopted in
the network it requires a Transport Manager able to interoperate with that protocol. Ser-
vice discovery and access is supplied by a pool of Salutation Managers (SLMs), which
are organized in a backbone. The SLMs represent the system bottleneck as they have
in charge both the provisioning of users with information about the available services
and the set-up of the client-server connections. Mechanisms must be deployed to allow
users to discover SLM addresses.

Microsoft developedUniversal Plug and Play(UPnP) [6] for the service and device
discovery in LANs. To exploit UPnP, a host has to execute the control point code, that
allows to discover the available services and access them on the remote devices. UPnP
can be used for services based on the TCP/IP protocol stack. Bluetooth devices could
participate in UPnP infrastructures through bridges supporting the interoperability be-
tween the two systems.

2.1 Service Discovery Protocol (SDP)

SDP [1] supplies functionalities to discover the services available in a Bluetooth pi-
conet. A service is described via aservice record, which contains a list of service
attributes. These service attributes are described in the corrisponding profile [2], and
their knowledge is needed to exploit the service. The most important attributes are the
ServiceClassIDListand theProtocolDescriptorList. TheServiceClassIDListis a list of
Universally Unique Identifiers(UUIDs) identifying the service classes that the service

171



implements, while the ProtocolDescriptorList describes the Bluetooth protocol stack to
be used to access the service, and the needed parameter configuration.

Any Bluetooth device carrying services also runs anSDP serverto make those
services available to other hosts. The SDP server maintains the records for the services
existing on the device identifying each record with a unique handle, and it interacts with
the SDP clientsresiding on devices willing to access remote services. A client looks
for a service by specifying aservice search patternthat is the list of UUIDs that must
characterize the service. A service record matches the search pattern if it contains all the
UUIDs listed in the pattern. A client may as well browse through the services available
on a given device. The services belong togroups, each one of which is identified by a
UUID that is recorded in the service records: the groups are arranged in a hierarchical
structure. A client can discover all the services belonging to a group by using the group
UUID as the search pattern.

SDP adopts a request/response communication scheme; three kinds of requests can
be generated by a SDP client:

ServiceSearchRequest:it is used to locate services whose records match the search
pattern;

ServiceAttributeRequest: it is used to retrieve attribute values from a specific record,
characterized via its handle;

ServiceSearchAttributeRequest: it combines the functionalities of the two requests
above, that is, it allows to retrieve attribute values concerning the services satisfying
the search pattern.

Requests are sent to a specific Bluetooth device, by having the SDP client that estab-
lishes a L2CAP connection with the SDP server. A SDP client could browse through
the services available in its communication range only by performing the inquiry pro-
cedure to discover the BDs in range, and then by repeating the above step for each one
of them separately.

3 Bluetooth Service Discovery and Access (BSDA)

BSDA(Bluetooth Service Discovery and Access) allows a BD to make its own services
available to other BDs, and to search for services provided by other BDs, independently
of their geographical location. In particular, the involved BDs may belong to different
piconets, connected through a wired network. BSDA is based on SDP. With BSDA a BD
is able to both browse through the services offered by a specific BD, and characterize all
the BDs providing a given service. Moreover, a BD is able to retrieve the service record
describing a particular service, and as a consequence to actually exploit the service.

In Fig. 1, we show the system we consider. BDs are connected in piconets. The role
of master is assigned to a device equipped with a wired network interface, thus also act-
ing as Access Point (AP) to the fixed network infrastructure. SDP is exploited by BDs
inside piconets to find the AP and to exchange information about the available services.
The service discovery functionalities are mainly in charge to the Home Agents (HAs).
A Home Agent is a fixed host in Internet that works as a central repository for informa-
tion about the services offered by BDs and is queried to discover which services a BD

172



supplies. More than one HA can exist in the system. Each BD is associated with one HA
and an HA can serve more than one BD. The AP allows a BD to interact with the HAs to
advertise its own services and discover services of other BDs. The communication be-
tween two BDs occurs through the APs to which they are connected. Usually, communi-
cations between an AP and an HA are based on the UDP protocol. Yet, long messages1

could be generated, that do not fit into an UDP message. In this case, TCP is used instead
to avoid problems related with message fragmentation. When exporting Bluetooth ser-

Fig. 1. BSDA operational environment

vices in Internet, an addressing scheme must be devised alternative to the 48-bit BD ad-
dress used inside piconets. That scheme must be independent of the current BD’s loca-
tion, while it can be a mnemonic name that allows users to easily indicate the BD whose
services are searched for. As the naming scheme we use a URL, that is associated to
each BD, and has the form:"Bluetooth://"<HAAddress>"/"<id-device>
; with <HAAddress> either the symbolic hostname or IP address of the Home Agent
which maintains the information about the BD, and<id-device> the symbolic name for
the specific BD. As an example, a user Bob working at the Computer Science Dept. of
the UCLA may have a PDA equipped with a Bluetooth interface card, and exploiting the
local Home Agent, whose associated URL is"Bluetooth://HA1.cs.ucla.edu/BobPDA" .

BSDA includes procedures to publish the services supplied by the BDs, to search for
services provided by other BDs, and to establish a session through the wired/wireless
network to exploit a service. For the sake of simplicity, we initially assume that BDs do
not move. We then explain how the protocol copes with BDs that dynamically change
the piconet to which they belong.

A BD wishing to make its local services available through Internet, besides of stor-
ing the appropriate service records in its own SDP server, must advertise them to its
HA, via its own AP (Service Registrationprocedure). The BD requests its AP to regis-
ter the BD’s services at the appropriate Home Agent, by sending it aRegistration
message containing the BD’s URL. Upon reception of this message, the AP sends an
SDP request to the BD to discover all the services the BD makes available. The ser-
vice records obtained this way are used by the AP to build aRegistration message

1 E.g., messages carrying information about several services.

173



Fig. 2. (a) Registration procedure. (b) ServiceSearchAttribute procedure.

that the AP sends to the HA indicated in the BD’s URL, thus replicating them at the
HA repository. In Fig. 2(a), we show the communication pattern for the registration
procedure.

The HA repository can be queried by exploiting BSDA when a BD wants to ac-
cess a service of another device (Service Searchprocedure). Two kinds of searches
can be performed: either a BD can perform a query about the services supplied by
a specific BD, or it can request an HA the identities of all the BDs registered at it
that provide a certain type of service. In both cases, the BD directly communicates
with its own AP, that then takes in charge the communication with the appropriate
HA. In the former case, the service client BD (BDc) sends to its own AP (APc) a
ServiceSearchAttribute message, containing the URL of the BD searched for
and an SDP service search pattern. This message is a modification upon the homony-
mous SDP message. The URL indicatesAPc which is the HA to contact, while the SDP
search pattern is the set of UUIDs to be used to select the appropriate service records
among those the HA owns concerning the BD server indicated in the URL. As an ex-
ample, consider a user Alice whose portable PCPCA exploits the HA at the Computer
Science Dept. of the University of Milan. If Alice wants to perform a file transfer to
Bob’s PDA, a connection must be established betweenPCA and its current AP. Then,
thePCA’s ServiceSearchAttribute message must be forwarded by that AP to
HA1.cs.ucla.edu,without the need of contacting thePCA HA. In Fig. 2(b), we show
the communication pattern for the processing of theServiceSearchAttribute
messages. TheServiceSearchAttributeReply contains the address of the AP
to which the BD searched for is currently connected, and the service records satisfying
the query.

In case a device wants to discover all the devices registered at a given HA and sup-
plying certain services, the client BD sends to its AP aServiceSearch message con-
taining the URL of the HA to be contacted and the SDP search pattern that the service
records must match. The client may as well indicate the maximum number of matches
it wants in response. The communication pattern is similar to that of Fig. 2(b). The
ServiceSearchReply message contains the URLs of the BDs satisfying the query;

174



the client BD may then refine the search by issuing aServiceSearchAttribute
for one of the obtained URLs. Once a client BD has obtained the address of the server

Fig. 3. (a) ServiceSession procedure. (b) Protocol stacks and connections used during an OBEX
Object Push session.

BD’s current AP, and the service record with the profile of the service the client wants
to exploit, a session can be set up to access the service. LetBDc be the client BD with
access pointAPc andBDs be the server BD connected to the access pointAPs. In
order to build a session,APc simulates to be the service entity forBDc, and it connects
to APs that in turn simulates to be the client entity forBDs. To this purpose,BDc

sends toAPc a ServiceSession message, containing theAPs address, theBDs

URL and the service record of interest.APc starts a BSDA entity acting as server for
the desired service, able to accept theBDc connection request. Then,APc sends the
ServiceSession to APs, which starts a BSDA entity acting as client, that estab-
lishes a connection withBDs. If this procedure is carried out successfully, thenAPs

sends an Acknowledgement toAPc. APc sendsBDc a ServiceSessionReply ,
possibly specifying the correct session parameters, if they are different from those spec-
ified in the service record. This may for instance occur if the RFCOMM channel that
should be used to connect to the server2 is already in use onAPc, and thenAPc has to
use a different value. WhenBDc receives the reply, it is able to set up a session with
APc and to use the service. All the service messages sent by eitherBDc or BDs are
received at their respective APs, where they are encapsulated by the BSDA entities to
be forwarded to the other AP, which decapsulate the service message and transmits it
to the local BD. The described procedure is shown in Fig. 3 (a). It is worth to notice
that the BSDA entities are completely unaware of the service characteristics and im-
plementation details. Their unique task is to appropriately encapsulate and decapsulate
messages to transfer them between heterogeneous protocol stacks (Fig. 3(b)).

As an example, let us suppose that a BDc wants to utilize the OBEX Object Push
capability [2] of another BDs that is not in communication range, but that is available

2 According to the service record

175



through APs. BDc sends its own APc a ServiceSession request containing the
OBEX Object Push service record previously obtained via aServiceSearchAttribute
request. This service record may be as follows:

Service Name: OBEX Object Push
Service Class ID List:

"OBEX Object Push" (0x1105)
Protocol Descriptor List:

"L2CAP" (0x0100)
"RFCOMM" (0x0003)

channel: 4
"OBEX" (0x0008)

APc then sets up an RFCOMM server listening on channel 4, as indicated in theProtocol
Descriptor List attribute. This RFCOMM server allows BDc to establish the ser-
vice connection with APc. APc then establishes a connection with the remote APs to
which the server BDs is connected and sends it theServiceSession message. The
receiving APs establishes an RFCOMM connection with the local BDs by using the
information contained in the service record and replies with anAck message. When
the source BDc receives theServiceSessionReply from its own APc, it connects
to APc and starts using the service. Figure 3(b) shows the protocol stacks and the es-
tablished connections among the entities participating in the session. The OBEX client
does not create the RFCOMM connection with the real OBEX server, that is not in
communication range, but with its own AP that will send data received from the OBEX
client to APs to which the OBEX server is connected. APs will send the data to desti-
nation.

3.1 Mobility support

So far, we assumed that BDs never move. When a BD moves from one piconet to
another, its AP changes and as a consequence the information maintained on its HA
becomes stale.

To prevent the usage of outdated information, the entries in the HA repository
are maintained according to a soft-state approach: an AP must periodically send a
Registration message to the HAs of the BDs it is currently connected to, or those
BDs information is removed. If no change is needed to the information held by the
HA, those periodic messages could contain just the URL of the BD whose entry must
be refreshed, thus saving bandwidth. This mechanism guarantees that old information
is deleted from the HA also in case the AP crashes or it becomes disconnected. On
the other hand, if an AP notices that it lost the connection to a BD, it may expedite
the updating of the corresponding HA information by sending it aDeregistration
message, which provokes the BD’s entry deletion. This message can be as well gen-
erated by a BD requiring its AP to remove it from its HA, because it is not anymore
willing to provide other BDs with its own services.

In spite of these mechanisms, it is not guaranteed that an AP does not contact an-
other AP not anymore supporting a given BD, because of the network latency. Simi-
larly, an HA may receive a request concerning either a BD which deregistered, or a BD

176



whose entry is expired. If an AP receives a message addressed to a BD currently not
connected to it, then the AP issues an error message in reply. If an HA receives a query
concerning a BD such that either is currently disconnected or the HA has no informa-
tion for it at the moment3, the HA replies with either aServiceSearchReply or
a ServiceSearchAttributeReply containing an error code. In both cases, the
client should perform a retry after some time, when the information about the sought
BD has been updated.

4 Protocol implementation and testing

Fig. 4. Layout of the test network

We implemented the proposed solution on a testbed platform. We use two note-
books and two desktop PCs each of them equipped with a ‘Ericsson ROK 101’ Blue-
tooth module. The notebooks work as BDs and the PCs as APs. One of the PC acts
also as Home Agent for the BDs. In Fig. 4, we show the layout of our testbed net-
work. All the four machines run RedHat Linux with Kernel 2.4.18 and use BlueZ
(http://bluez.sourceforge.net ) as the Bluetooth protocol stack. We tested
our protocol with the OBEX Object Push service.Sirio acts as OBEX client and
Orion as OBEX server. The goal is to transfer a file fromSirio to Orion even
if they are not directly connected. BlueZ does not include the OBEX protocol, thus
we used OpenOBEX (http://openobex.sourceforge.net ). All the software
modules that constitute the system were implemented in C. In the following, we provide
a brief description of the testbed implementation.

Two relevant data structures have been implemented, namely the HA repository
and a structure recording the characteristics of the connections an AP has active with
its own BDs and possibly other APs. The communications channels shown in Fig. 4
are implemented through sockets. The information maintained in the HA repository for
each registered BD is: the BD’s URL, the address of the associated AP, the list of its ser-
vices, a timestamp indicating the registration time and the active flag indicating whether

3 The BD’s status is expired at the HA.

177



the registration is still active or not. If the active flag is 0, the HA can either remove the
entry, if it needs memory, or maintain it and update it when the corrisponding BD re-
registers again. In the latter case, the non-active entries are not considered in replying
to the queries. The entry fields are initialized upon the reception of aRegistration
message. The timestamp value is obtained using thegettimeofday() function. An
entry is considered valid if its timestamp is lower than 120 seconds. Every service
session involves two connections: one between two APs, that is a TCP (or UDP) con-
nection and one between AP and BD, that is a Bluetooth connection. As a consequence,
every AP needs a mechanism to associate these two types of connection to properly
forward the data among them. Each AP stores a list containing a mapping of wired and
Bluetooth sockets for each service-related connection. An AP monitors all its network
connections exploiting theselect()system call. Based on which socket becomes ac-
tive the AP acts accordingly. At the bootstrap,Sirio andOrion have to find an AP.

Fig. 5.BD command interface example: (a) Sirio registration and device discovery; (b) service
search and access onSirio .

When the connection with the AP is established, a command interface is shown to the
user. Using this interface, the user can exploit BSDA to discover BDs having desired
services, to obtain specific information on these services and to exploit them.

In Fig. 5, we show the user interface provided by a BD. In Fig. 5(a), theSirio
user chooses to discover which BDs have the OBEX Object Push service. It provides
the HA address and the name or UUID of the service and obtains the URLs of the BDs
that match the search pattern (in this case only Orion). In Fig. 5(b), the BD obtains the
specific information about the service and asks its own AP to establish a service session.
As we can see,Sirio obtains in reply the needed parameters to exploit the service via
Mozart . These parameters are used as input for the OBEX client code included in
OpenOBEX.

178



5 Concluding remarks

In this work, we present an original infrastructure supporting the access of Bluetooth
services by Bluetooth devices located in a piconet different from that of the server
device. The infrastructure has been implemented on a testbed platform and its suitability
has been analyzed by exploiting it to guarantee the remote accessibility of a file transfer
service based on the Bluetooth protocols.

As a future work, we plan to perform measurements with the testbed implemen-
tation, to perform a fine tuning of the timer used for the soft-state maintenance of the
entries in the HA repositories. A peer-to-peer infrastructure could be designed, connect-
ing the Home Agents, that would allow to extend the service search range. Moreover,
we are studying the possibility of adapting the infrastructure to be used in a scatternet,
that is, an ad hoc wireless network obtained by connecting several piconets.

References

1. Bluetooth Special Interest Group:“Bluetooth V1.1 Core Specifications”. May 2001,
http://www.bluetooth.org .

2. Bluetooth Special Interest Group:“Bluetooth V1.1 Profile Specifications”. Feb. 2001,
http://www.bluetooth.org .

3. Guttman E. and Perkins C. and Veizades J. and Day M.:“Service Location Protocol - Version
2”. RFC 2608, IETF, June 1999. Work in Progress.

4. Sun Microsystems: “Jini Architectural Overview”. Technical White Paper, 1999,
http://www.jini.org .

5. The Salutation Consortium:“Salutation Architecture Specification (Part-1)”. Version 2.1,
1999,http://www.salutation.org .

6. Microsoft Corporation:“Understanding Universal Plug and Play”. White Paper, 2000,
http://www.upnp.org .

179


