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Abstract. A condensed specification of a multi-level marketing enterprise in the
Z specification language is presented and a number of proof obligations that result
from operations on the state is stated. The feasibility of using certain reasoning
heuristics for discharging proof obligations emerging from the specification is
investigated and we show how two important proof obligations arising from the
specification of a real-life enterprise may successfully be discharged using a suite
of well-chosen heuristics.

1 Introduction

Among the benefits to be gained by using a formal specification language like Z [1] is
that the specifier can prove things about the specification. The process of constructing
proofs can aid in the understanding of the system and may reveal hidden assumptions
[2].

The huge cost and inconvenience of detecting and correcting errors only after the
system has been released [3], justifies the effort to identify and correct errors at an
early stage (e.g. specification phase). However, the readiness with which the informa-
tion technology industry would accept such a methodology is likely to depend on the
availability of environments that ease the burden on the specifier by automating much
of the specifier’s tasks. The more sophisticated the environment (and thus the greater its
contribution to the partnership), the more natural becomes the inclusion of a reasoning
algorithm as one component.

Reasoning about the properties of an enterprise information system at the specifi-
cation level may, however, be a non-trivial task owing to the size of the system or the
complexity of the structures that make up such a system. Accounts of costly, yet failed
proof attempts exist. Mokkedem et al. [4] report that an attempt to generate a proof
monolithically in one step from a stated property to a protocol was prohibitively diffi-
cult. The one step proof was abandoned, unfinished, after 18 months of effort which led
to the specifiers eventually adopting an incremental proof strategy.

Since Z is based on first-order logic and a strongly typed fragment of Zermelo-
Fraenkel (ZF) set theory, it makes sense to investigate to what extent a set of heuristics
[5] for proving theorems in set theory may be used to reason about the Z specification
of a multi-level marketing enterprise.
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1.1 Why Reasoning Heuristics?

Traditionally set-theoretic proofs pose demanding challenges to automated reasoning
programs [6, ?], since unlike number theory or group theory or applications to real
systems such as power stations, the denotations of terms in the context of set theory are
strongly hierarchical: one object (perhaps at a very fine level of granularity) is a member
of another (coarser) object, which in turn may be a member of a higher-level (even
coarser) object, and so on. The possibility of moving between levels is a provocation
to much irrelevant activity; intelligence would be realised by heuristics that limit the
movement up or down to productive changes of granularity [7].

It is furthermore an open problem as to which inference rule would build set the-
ory into a theorem prover the same way as paramodulation builds in equality-oriented
reasoning [8]. Paramodulation is a rule applied to a pair of clauses and requiring that at
least one of the two contains a positive equality literal, and yielding a clause in which
an equality substitution corresponding to the equality literal has occurred. The object of
an application of paramodulation is, therefore, to cause an equality substitution to take
place from one clause into another.

Devising a set of heuristics appears to be the best strategy for reasoning about set-
theoretic constructs [7]. Such a set of heuristics was developed by one of the authors [5]
and in this paper we investigate to what extent these heuristics are useful for reasoning
about the properties of a franchise or a multi-level marketing enterprise [9].

1.2 Structure of this Paper

Section 2 presents a brief overview of OTTER [10], the automated reasoner used in this
work. A number of heuristics for reasoning about set-theoretic structures is presented
in Sect. 3. A brief Z specification of a generic multi-level marketing enterprise [9] is
given in Sect. 4. Some applications of the said heuristics are illustrated in Sect. 5 where
two proof obligations (POs) are stated and discharged using an automated reasoner. A
summary and some ideas about future work conclude this paper.

2 The OTTER Theorem Prover

OTTER (Organized Techniques for Theorem Proving and Effective Research) [10] is
a resolution-based theorem-proving program for first-order logic with equality and in-
cludes the inference rules binary resolution, hyperresolution (both positive and nega-
tive versions), UR-resolution and binary paramodulation. OTTER was written and is
distributed by William McCune at the Argonne National Laboratory in Illinois.1

OTTER can convert first-order formulae into sets of clauses, which constitute the
input to the resolution algorithm. Of course, OTTER cannot accept formulae in the
highly evolved notation of set theory so the user has to rewrite set-theoretic formulae
in terms of a weaker first-order language having the relevant relations and functions
as predicate symbols and function symbols in its alphabet. Some other capabilities of

1 At the time of writing the latest version of OTTER is available at: http://www-
unix.mcs.anl.gov/AR/otter.
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OTTER are factoring and weighting. The purpose of a weight clause is give a weight to
variables or terms and if such weight is chosen sufficiently high then the generation of
too many irrelevant paramodulants is effectively blocked. Note, however, that the use
of a weight leads to an incomplete search strategy.

An OTTER program is divided into several sections, each such section made up
of first-order formulae or clauses (an exception is the section containing the optional
demodulators which must be in clausal form already). The most important sections are
the usable list and the set-of-support (sos) list. It is customary to place the negation of
the theorem to be proven in the sos and the rest of the information in the usable list.

Next we introduce a number of heuristics for reasoning about set theory. These
heuristics were developed to address the problems discussed in Sect. 1.1.

3 Set-Theoretic Reasoning Heuristics

The heuristics presented in this section are detailed in [5, ?] and have been developed
empirically through observing the behaviour of, as well as studying the format of the
clauses generated by the reasoner during a proof attempt. In total 14 heuristics were
developed and we briefly discuss some prominent ones below:

1. Weight strategy: Use the setting weight(x,n), for n ∈ {3, 4, 5}, whenever the
sos consists of the negation of an equality literal. Equality reasoning with paramod-
ulation generally results in the generation of many irrelevant clauses. Assigning a
weight of n to all variables avoids the generation of too many irrelevant paramod-
ulants. Empirically we found a weight of 3, 4 or 5 to be sufficient.

2. Extensionality: Use the principle of extensionality to replace an equality in the sos
with the condition under which two sets are equal, i.e. whenever their elements are
the same.

3. Nested functors: Avoid, if possible, the use of nested functor symbols in definitions.
Terms built up with the aid of function symbols (called functors) are more complex,
potentially leading to difficulties with unification of terms, especially when these
functors are nested inside other structures.

4. Divide and Conquer: Perform two separate subset proofs whenever the problem at
hand requires one to prove the equality of two sets. An equality in the sos implies
(via Extensionality) an ‘if and only if’. Hence a specifier may opt for two proofs,
one for the only-if part and another for the if part.

5. Multivariate functors: Make terms in sets as simple as possible — either not in-
volving functors at all, or else involving functors with the minimum number of
argument positions taken up by variables. The more variables occur as arguments
to a functor, the greater the likelihood of thrashing caused by the unification of
these variables with other terms.

6. Intermediate structures: Avoid complex functor expressions by using an indirect
definition for an internal structure whenever this appears less likely to produce
complex functor expressions than the direct definition. In practice we simply give a
name to a complex structure that is nested inside another structure and then define
the inner structure externally on its own, instead of unfolding its definition directly
inside the enclosing structure.
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7. Element structure: Define the elements of relations and functions directly in terms
of ordered pairs or ordered n-tuples whenever the tuples need to be opened to find
a proof. An ordered n-tuple is an example of a functor and projecting out the coor-
dinates of the tuple often avoids the various functor problems listed above.

8. Search-guiding: Generate and use half definitions, via the technique of resolution
by inspection, for biconditional formulae in the usable list whenever the sos con-
sists of a conditional formula or a single literal. A half definition is an implication
(e.g. only-if) as opposed to an if and only if definition. Through inspection it is
often possible to trace the initial steps a reasoner would perform starting with the
conditional formula in the sos. Hence it is possible to predict which half of some
definitions in the usable list would probably be needed and which ‘other halves’ are
redundant.

9. Inference rule selection: Use set(neg hyper res) in the place of positive hy-
perresolution whenever the combined use of set(hyper res) and set(ur res)
rapidly makes the sos empty. If no rapid proof results, try binary resolution. Both
forms of hyperresolution are capable of generating homogeneous clauses only (i.e.
just positive or just negative but not mixed). Although many researches warn against
the use of binary resolution [11] we found such rule to be occasionally useful (see
Sect. 5 below).

10. Resonance: Attempt to give corresponding terms in formulae a syntactically similar
structure to aid the resolution process [12]. Not only does this apply to terms just in
the usable list, but also to a term in the sos and a corresponding term in the usable
list.

4 A Multi-level Marketing Enterprise

A multi-level marketing (MLM) enterprise [9] markets consumable products through
people as follows: A new distributor registers with the enterprise either as a direct asso-
ciate of the company, or under an existing distributor called an upline. Both the upline
(also called the sponsor) and the new distributor (now called a downline) then go on
to each sponsor more new distributors, and so on. In this way a network of distributors
of the products of the company is built. Hence, a MLM structure can be modelled by
forests and trees [13].

Distributors buy products from the company and every product carries a point value
(pv) as well as a business value (bv). The business value is directly related to the price
of the product. Both the points and the business values are accumulated per distributor
throughout a calendar month. At the end of the month the total business value in the
network for each distributor is calculated, and the distributor is paid (in the appropriate
currency) a certain percentage (determined by the pv) of the total business value for his
or her group. This is called a bonus.

A small MLM network is shown in Fig. 1. Distributors A1, A2 and A3 associated
with the company directly are called the roots of the forest (or network in MLM terms).

The state of our MLM enterprise is (\ represents set-theoretic difference):
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Fig. 1. An example network

MLM
known : P ID
NRoots : P ID
NUplines : ID ↔ ID
NDist : ID 7→ Name× Address× PV × BV × Bonus

known = dom NDist
dom NUplines ∪ ran NUplines ⊆ known
NRoots = known \ ran NUplines
Inj(NUplines)

The set known contains the identity codes of all distributors in the system. NRoots rep-
resents all root distributors. The relation NUplines represents the network of distribu-
tors while the function NDist represents a mapping from a unique identity code to the
particulars for that distributor. NDist is not necessarily injective since two (or more)
distributors may have the same particulars (i.e. name, address, etc.). Every distributor
has at most one upline, captured by the following general definition of injectivity:

(∀R)(Inj(R) ↔ (∀ i)(∀ j)(∀ k)( ((i, k) ∈ R ∧ (j, k) ∈ R) −→ (i = j))) (1)

The following operation registers a new distributor p! below an existing one, q?:

Register with upline
∆MLM
p!, q? : ID
name? : Name; addr? : Address

p! /∈ known ∧ q? ∈ known
known′ = known ∪ {p!}
NUplines′ = NUplines ∪ {q? 7→ p!}
NDist′ = NDist ∪ {p! 7→ (name?, addr?, 0, 0.0, 0.0)}
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A new identity code p! is generated by the system and the new distributor is linked to
q? in NUplines′. Initial product information pertaining to p! is reflected in the personal
pv being 0 and both the business value and potential bonus equal to the real value 0.0.

An order placed by a distributor is given by:

Order
∆MLM
id? : ID; pv? : PV; bv? : BV

id? ∈ known
(∃ pv : PV; bv : BV •

pv = third(NDist(id?)) + pv? ∧
bv = fourth(NDist(id?)) + bv? ∧
NDist′ = NDist ⊕ {id? 7→

(first(NDist(id?)), second(NDist(id?)),
pv, bv, fifth(NDist(id?)))})

The functions first, second, etc. project out an element at the appropriate position in the
tuple. NDist′ is obtained from NDist by replacing the tuple with first coordinate id? as
specified above. Many additional operations may be defined on the state but are beyond
the scope of this paper. The interested reader is referred to [14].

Next we show how some of the heuristics introduced in Sect. 3 may be used to suc-
cessfully discharge two proof obligations that arise from the MLM specification where
otherwise proofs are not easily arrived at.

5 Reasoning about the Specification

Showing NRoots = known′ \ ran NUplines′. Normally in Z a correct operation is as-
sumed to preserve the invariant. Nevertheless, a specifier may want to verify the follow-
ing as a postcondition of schema Register with upline (Note that NRoots′ = NRoots):

NRoots = known′ \ ran NUplines′ (2)

In effect the above predicate claims that the set of root elements is still equal to the
new set of all distributors (known′) minus the new set of all downline distributors
(ran NUplines′). If we define NewRoots = known′ \ ran NUplines′ and pose the nega-
tion of the following equality in the sos

NRoots = NewRoots (3)

then OTTER finds no proof in 20 minutes using a weight of 3, 4 or 5 and either posi-
tive or negative hyperresolution. Since neither form of hyperresolution is able to find a
proof, we apply our inference rule selection heuristic and resort to binary resolution but
still using our weight template. Now the reasoner finds a proof after just 0.66 seconds.

Why does the reasoner fail to find a proof for (3) using hyperresolution? The sos
format (3) requires the axiom of Extensionality [15]

(∀A)(∀B)[(∀ x)(x ∈ A ↔ x ∈ B) → (A = B)] (4)
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to ‘open’ the equality in terms of elementhood to (loosely speaking) arrive at the fol-
lowing form of (3):

(∀ x)(x ∈ NRoots ↔ x ∈ NewRoots) (5)

The negation of (5) clausifies into:

$c1 ∈ NRoots ∨ $c1 ∈ NewRoots (6)
$c1 /∈ NRoots ∨ $c1 /∈ NewRoots (7)

Formula (2) is unfolded in first-order notation as

(∀ x)(x ∈ NRoots ↔ x ∈ known′ ∧ x /∈ ran(NUplines′))

and it clausifies into

x /∈ NRoots ∨ x ∈ known′ (8)
x /∈ NRoots ∨ x /∈ ran(NUplines′) (9)

x ∈ NRoots ∨ x /∈ known′ ∨ x ∈ ran(NUplines′) (10)

Note that positive hyperresolvents can be generated by resolving the sos clause (6) with
(8), but the sos clause (7) is not capable of generating a positive hyperresolvent with any
of the clauses (8) - (10). The result is that a proof attempt using positive hyperresolu-
tion cannot start off correctly. A similar problem occurs with negative hyperresolution.
Binary resolution creates no such problem, since binary resolvents may be mixed.

Still with this proof attempt, suppose a specifier is initially, due to the weight clause,
concerned about an incomplete search for a proof. If we omit the weight template in the
above binary resolution proof then the reasoner again finds no proof in 20 minutes (as
opposed to a proof in 0.66 seconds). This forms the basis for a further heuristic that
may be applied to our last failed proof attempt.

In the proof of (3) we unfolded the predicate NUplines′ = NUplines ∪ {q? 7→ p!}
in schema Register with upline into an ‘OTTER-like’ notation as

(all x)(El(x,NUplines′) ↔ El(x,NUplines) | El(x, Sin(ORD(q?, p!)))) (11)

using the following first-order definition for a singleton:

(∀ x)(∀ y)(x ∈ Sin(y) ↔ x = y) (12)

Together with definition (11), we also needed the following fact about ordered pairs
from [15]:

(∀ u)(∀ v)(∀w)(∀ x)(ORD(u, v) = ORD(w, x) ↔ ((u = w) ∧ (v = x))) (13)

Upon studying the clauses generated by the search for a proof, we note that (12) and
(13) interact to generate literals of the form El(ORD(x, y), Sin(ORD(u, v))) where x, y,
u and v are variables. This literal contains nested functors, a practice discouraged by
our heuristic #3, since it, in the absence of a weight template, leads to a large number
of unnecessary unifications.
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If we, therefore, rewrite (11) as

(all x)(El(x,NUplines′) ↔ El(x,NUplines) | (x = ORD(q?, p!))) (14)

and still omit the weight template, then OTTER again finds a proof for (3), but in 3.70
seconds. According to our element structure heuristic #7 we can further rewrite (14) as

(∀ y)(∀ z)

(ORD(y, z) ∈ NUplines′ ↔ (ORD(y, z) ∈ NUplines ∨ (y = q? ∧ z = p!))) (15)

which cuts the execution time of 3.70 seconds down to just 0.06 seconds.

Cardinality proof. After the execution of operation Register with upline we expect
the following to hold regarding the cardinality of the set known′ = known ∪ {p!}:

#known′ = #known + 1 (16)

We use the following two definitions of cardinality (Card(A, n) denotes #A = n)

(∀A)(Card(A, 0) ↔ A = ∅) (17)
(∀A)(∀ n)(Card(A, n + 1) ↔ (∃ x)(x ∈ A ∧ Card(A− {x}, n))) (18)

Suppose we start with the precondition Card(known, n) and pose the following question
in the sos:

−Card(known′, n + 1) (19)

OTTER finds no proof for (19) in 30 minutes and closer investigation reveals that the
term Card(A− {x}, n) above contains nested functors (i.e. a singleton definition inside
a set difference inside the functor Card), a practice discouraged by our nested functor
heuristic. As a first step we unfold definition (18) as:

(∀A)(∀ n)(Card(A, n + 1) ↔

(∃B)(∃ x)(x ∈ A ∧ Card(B, n) ∧ (∀ y)(y ∈ B ↔ y ∈ A ∧ y /∈ {x}))) (20)

With this unfolding OTTER still finds no proof, but since such unfolding is in turn
against the recommendation put forward by the intermediate structure heuristic we re-
place the definition of set B in (20) with

(∀ y)(y ∈ B ↔ y ∈ DIFF(A, {x})) (21)

where x is still existentially quantified as in (20) and DIFF is defined by:

(∀ x)(x ∈ DIFF(known′, {p}) ↔ x ∈ known′ ∧ x /∈ {p}) (22)

With these definitions OTTER finds a short proof for (19) in just 0.21 seconds. Defini-
tion (22) is in line with our multivariate functor heuristic which advocates cutting down
on the number of variables as arguments of functors. This is mainly the reason why the
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nested functor in definition (21) turns out to be harmless. For example, if we rewrite
(22) above as

(∀A)(∀ p)(∀ x)(x ∈ DIFF(A, {p}) ↔ x ∈ A ∧ x /∈ {p}) (23)

then OTTER again finds no proof in 20 minutes. Replacing one of the variables (say A)
in (23) above with a constant again helps OTTER to find a proof in 8.59 seconds.

We may also fit our search-guiding heuristic onto the last definition of Card above.
The technique of resolution by inspection reveals that the sos question (19) needs just
the ‘if-direction’ of (20). If we make such adjustments we can even find a proof using
(23), but in 1 minute 27 seconds.

6 Summary and Future Work

This paper illustrated how some set-theoretic reasoning heuristics previously developed
may be used to discharge two proof obligations that arise from the specification of a
multi-level marketing enterprise. We showed that the same PO may be discharged in
more than one way. This is significant, since if a particular heuristic fails to deliver then
another one may be applied instead. The full suite of heuristics defined in Sect. 3 have
been shown to be useful in reasoning about the properties of an extended version of the
Information Enterprise described in Sect. 4 of this paper. Details appear in [16].

A number of problem areas, however, remain: Our enterprise model is inherently
recursive, resulting in the reasoner experiencing difficulty when reasoning about recur-
sive structures. For example, using our traditional definitions of cardinality (17) and
(18) allows the reasoner to easily prove that the cardinality of the empty set is 0, or
the cardinality of a singleton equals 1. If we, however, pick a set with two elements,
say X = {2, 3}, then OTTER fails to find a proof of the property #X = 2 in 20 min-
utes using any of our heuristics listed above. More work will have to be undertaken to
successfully guide the reasoner through the minefield of recursion.

Further empirical work is also called for to scale up the proofs reported on in this pa-
per to industrial sized proof attempts and we anticipate that additional heuristics would
have to be developed to address the challenges that may unfold from such experiments.
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