
Open Secure Infrastructure to control User Access to
multimedia content

Carlos Serrão1, Gregor Siegert2

1 Adetti/ISCTE, Ed. ISCTE – Av. Das Forças Armadas, 1600-082 Lisboa, Portugal

2 Avanti Communications, 28-30 Hoxton Square, London N16NN United Kingdom

Abstract. This paper describes the OpenSDRM security, based on an open-
source framework developed for the IST project MOSES, OpenSDRM is used
to control the multimedia content consumption in conjunction with the new
MPEG-4 IPMPX proposed standard. This architecture, composed by several
building blocks, protects the content flow from creation to final user consump-
tion on a specific device.

1 Introduction

OpenSDRM deploys a secure and distributed DRM solution for content rights protec-
tion that can be applied for publishing and trading of digital multimedia content. This
architecture started from the OPIMA international specifications [1], MPEG-4 IPMP
Extensions [2] and the emerging MPEG-21 IPMP architecture [6]. OpenSDRM is
being developed primarily in the scope of the MOSES project, an EC project joining
companies from all over Europe, implementing the new MPEG-IPMP Extensions
framework and at the same time developing business models and applications for
secure content exchange between embedded devices [3, 5]. This solution is composed
of several optional elements covering the content distribution value chain, from con-
tent production to content usage. It covers several major aspects of the content distri-
bution and trading: content production, preparation and registration, content, interac-
tive content distribution, content negotiation and acquisition, strong actors and user’s
authentication and conditional visualization/playback [3]. Figure 1 shows the archi-
tecture that will be explained in the next section in greater detail. The communication
between the components will take place within insecure networks. This introduces
special needs regarding the security of this communication. The concept behind the
platform is the existence of two security layers. A first security layer established at
the communication level, which provides the necessary secure and authenticated
communication medium to components to communicate with each other and a second
layer established at the application level, ensuring the security, integrity, authentica-
tion and non-repudiation mechanisms needed by the different components.

Serrão C. and Siegert G. (2004).
Open Secure Infrastructure to control User Access to multimedia content.
In Proceedings of the 2nd International Workshop on Security in Information Systems, pages 180-185
DOI: 10.5220/0002672501800185
Copyright c© SciTePress

Fig. 1 - OpenSDRM platform architecture composed of several external (User, Payment Infra-
structure, Content Provider, IPMP Tools Provider, Certification Authority) and internal com-
ponents (Payment Gateway (PGW), Media Delivery Server (MDS), Content Preparation Server
(CPS), Commerce Server (COS), Registration Server (RGS), Configuration Server (CFS),
License Server (LIS), Media Application (MPL), Authentication Server (AUS) and IPMP
Tools Server (ITS)).

1.1 Server Components Certification and Registration on OpenSDRM

To establish the secure transport layer, the software components use SSL/TLS proto-
col. Each of the servers, have a X.509 certificate issued by a Certification Authority
(CAU). The CAU can be operated internally by OpenSDRM itself or can be an exter-
nal and commercial one. OpenSDRM establishes an underlying secure and authenti-
cated transport channel that allows messages to flow from component to component
securely. The process works this way: (a) Each component computes a key pair (pub-
lic and private) , Kpub

Server, Kpriv
Server, using the RSA algorithm and create Certificate

Signing Request (CSR) using its public key and some additional information sending
it after to the CAU; (b) The CAU verifies the CSR validity and issues the X.509 SSL
certificate to the component, CertX.509

Server; (c) The certificate is installed and the com-
ponents can use SSL/TLS to communicate, establishing the secure transport layer.
The architecture requires both components and Users to be registered, in order to

181

establish the Application/Transaction level security. Concerning components those
are registered on OpenSDRM AUS. In order to complete this process the following
steps are necessary, during the installation of each of the components: (a) Each com-
ponent computes a key-pair (1024 bit length RSA keys, but higher key lengths are
also possible): KpubComponent, KprivComponent (respectively the public and private keys);
(b) The component administrator selects a login and a password, and ciphers the
KprivComponent, using AES, with the key (KAES) deduced from the hash of the concate-
nation of the login and password selected: KAES := MD5(login+password). The ci-
phered component private key gets then protected from unauthorized usage:
KAES[KprivComponent]; (c) The component then connects to the AUS and sends some
registration information together with the KpubComponent. AUS verifies the information
sent by the component, validates and registers it, and issues a certificate for the com-
ponent: CertAUS

Component. This certificate is returned to the component. With these
component certificates, each of the components will be able to establish trust relation-
ships among them and sign and authenticate all the transactions – this establishes then
the Application Level security.

1.2 User’s registration on the OpenSDRM platform

In OpenSDRM three components interact directly with external users/entities – MPL,
CPS and ITS. These users, respectively Content Users, Content Providers and IPMP
Tools Providers are registered on the platform, through the AUS. Content Providers
and IPMP Tools Providers, subscribe respectively on the CPS and ITS, relying on the
registration and authentication functionalities of the AUS. Therefore, when a new
user subscribes, it provides some personal information, a login and password and
requests the registration. The following processes can be described like this: (a) The
components (ITS and CPS) gather the new registrant information (Info) and request
the registration of a new user on the AUS; (b) The components build a new message:
SignKprivComponent{ComponentID, Info}. This message is send to AUS; (c) AUS veri-
fies and validates the message, registering the new User and returning a unique UserID
to the component. Registering a Content User is a more complex process. This is due
to the fact that while both Content Providers and IPMP Tool Providers have their
information stored on remote servers, Content Users rely on their own platforms to
store their data. In order to provide some additional degree of security, OpenSDRM
provides a digital wallet, capable of storing sensitive information such as crypto-
graphic data and licenses in a secure way. The process to register new Content Users
can be described in the following steps: (a) When the user runs the wallet for the first
time, it creates the User a RSA key pair (KprivUser, KpubUser) and asks the user to
enter a login and a password; (b) Using the entered login and password, it creates the
secure repository master key: KAES = MD5(login+password), and stores sensitive
information (Info) on it: KAES[Info]; (c) The wallet asks the user to enter some per-
sonal data (PersonData) and also some payment data (PayData) used to charge the user
for any commercial content usage; (d) The wallet requests the AUS to register a new
User, sending all the information ciphered with the AUS KpubAUS:
KpubAUS[PersonData, PayData, KPrivUser, KpubUser]; (e) AUS receives the data, deci-
phers it and registers the User. AUS responds to the Wallet with a new certificate

182

generated for the User: CertAUS
User, containing among other information the unique

identifier of the User, its public key, the identification of the AUS its signature; (f)
The wallet stores all the relevant information on the secure repository:
KAES[CertAUS

User].

1.3 Components message exchange

The process for the components to exchange messages and to verify the authenticity
and validity of such messages is composed of the following steps: (a) The sender
component (CSender) composes a message using the following syntax: SignK-
privCSender{CSenderID, Payload, CertAUS

CSender}; (b) The receiver component (CRe-
ceiver) receives the message and verifies the trust on the message. This trustability is
assured in the following way: (a) CReceiver gets CertAUS

CSender and checks if it was
issued by a AUS in which CReceiver trusts; (b)This verification can be conducted if
CReceiver has also a certificate issued by AUS: CertAUS

CReceiver; (c) After the trust is
established, the message signature can be verified and validated and CReceiver can
trust its contents, and also in the component who has sent this message; (d) CReceiver
can then process the message payload and return its results for the CSender; (e) CRe-
ceiver returns the following message to CSender: SignKprivCReceiver{CReceiverID,
Results, CertAUS

CReceiver}.

1.4 Payment information and services

Payment of content usage is one of the questions that OpenSDRM also deals and
incorporates mechanisms for payment. To provide this functionality a direct trust
relationship must be established between the COS and the PGW. Therefore the COS
needs to subscribe a PGW. The process to subscribe a PGW can be described as the
following: (a) The COS connects to the AUS and asks the AUS which are the PGW
available on the system. COS sends SignKprivCOS{COSID, RequestAvailablePGWs}
to AUS; (b) AUS verifies the message, and returns an answer to the COS: SignK-
privAUS{<ListOfAvailablePGWs, CertAUS

PGW>}; (c) The COS selects one available
PGW and sends to it a subscription request: SignKprivCOS{AUSID, SubscribePGW,
CertAUS

COS}; PGW receives the request from the COS, validates its request and sub-
scribes the COS. Therefore, this PGW will be used to validate and process payments
used by a given User. Using the payment service provided in OpenSDRM involves
two steps: validating the payment instrument and capturing the payment. Validating
the payment instrument allows the COS to trust the payment method supplied by the
user, and that the transaction can be conducted without problems. Validating the
payment involves the following steps: (a) The COS sends information about the pay-
ment details, namely information about the User order and the price to pay for it, to
AUS: SignKprivCOS{COSID, UID, PGWID, PayData}; (b) AUS verifies and validates
the COS request and checks the UID in order to retrieve the appropriate payment
method choose by the User upon registration on the AUS. This data is ciphered with
the public key of the PGW: KpubPGW[PaymentClearenceU]; (c) The AUS returns this

183

information for the COS, signing it: SignKprivAUS{KpubPGW[PaymentClearenceU]};
(d) This information is then passed by the COS to the PGW, requesting it to validate
the payment transaction: SignKprivCOS{COSID, KpubPGW[PaymentClearenceU]}; (e)
PGW validates the message and deciphers the User payment clearance, using this
information to communicate to the corresponding Payment Infratructure, validating it.
After, the PGW returns the result of the payment validation to the COS: SignK-
privCOS{PGWID, TransactionID}; This concludes the payment method validation on
the PGW, assuring the COS that the services supplied to the User will be charged.
The second step in the payment procedure involves the payment capture. This process
requires that first a payment capture has occurred and second that the COS owns a
TransactionID. The capture process can be described in the following: (a) COS sends a
message to PGW: SignKPrivCOS{COSID, TransactionID}; (b) PGW validates the mes-
sage and verifies the TransactionID, in order to evaluate if that transaction is in fact
pending, and processes the payment; (c) PGW returns and a result status to the COS:
SignKPrivPGW{PGWID, TransactionID, Result}.

1.4 License Production, download and expiry

One of the major functionalities of the OpenSDRM platform resides on the fact that it
can control the way the Users access and use the content protected by the platform.
This process is ensured by the production of licenses. These are later applied on the
content of the user on the client player by the appropriate set of IPMP tools. These
licenses are produced and stored securely by the LIS, according to the choices made
by the User and after the payment has been performed. The process can be described
in the following steps: (a) The User selects a set of available conditions, that allow
him to define the usage conditions (rights) of the content the User wants to access; (b)
COS sends a message to the LIS, requesting the production of a new license, for a
specific content, and for a given User: SignKprivCOS{UID, ContentID, LicenseCondi-
tions, CertAUS

COS}; (c) LIS receives the request, verifies it and validates it. LIS gener-
ated the license using the appropriate language and parameters, contacting after the
AUS for ciphering the license data for the User: SignKprivLIS{License}; (d) AUS
receives the data, retrieves the KpubUser and ciphers the received data:
KpubU[License], returning it afterwards to the LIS: SignK-
privAUS{KpubUser[License]}; (e) LIS stores KpubUser[License]. When the User tries to
access the content on the client side the player verifies that a license is needed to
access the content. The player contacts the wallet to try to obtain the required licenses
and corresponding keys to access the content. This process can be described in the
following steps: (a) The player contacts the wallet to obtain the license for the Con-
tentID and UserID; (b) The wallet checks on its secure repository if a license for that
specific ContentID is already there. If that is true than this license is returned for the
player in order for the content to be deciphered and accessed, controlled by a set of
IPMP tools. If the wallet doesn’t contain the license, it will request it from the LIS:
SignKprivU{CertAUS

User, ContentID}; (c) LIS receives the data, validates it and re-
trieves the license from the database, passing it to the wallet: SignKpriv-
LIS{KpubUser[License], CertAUS

LIS}; (d) The wallet receives the data from the LIS,
validates the message and deciphers the license that is passed to the player. Also the

184

license is stored on the wallet secure repository for future accesses. The downloaded
license is kept in the LIS for later crash recovery in an event of failure and later expi-
ration checks. Depending on the rights specified, a license will eventually expire.
Rights such as a play count or a validity period may restrict the access to content to a
certain number of times or to a certain time frame. The state of the license is main-
tained within the digital wallet. Upon expiration, for example when a play count
reaches zero, the wallet automatically checks at the LIS for a new license for that
particular content. If there is no license available and the user wants to continue with
the consumption of the content he has purchase a new License as described before.
The LIS also applies an internal checking algorithm to manage the state of its li-
censes. Licenses that expired will be removed from the LIS.

2 Conclusions

This paper presented and discussed the security aspects of an open platform for the
multimedia content IPR. The focus was mostly in the description of the security pro-
tocol and secure message exchanging which is established among the different com-
ponents [4]. OpenSDRM relies on text-based communication. Therefore it defines a
two layered security protocol [3]. OpenSDRM, contrarily to the normal operation
followed by other DRM solutions, addresses DRM using an open approach, follow-
ing open standards and open-source software. Finally, it is important to stress the fact
that although OpenSDRM is mostly an open-standards and open-source based solu-
tion, this doesn’t prevent that some parts of the system may be closed. An example of
this is the fact that the authoring tools used to protect the content itself may be closed.
Protection tools, such as watermarking algorithms and specific scrambling or encryp-
tion algorithms may be closed, although they are used on an open environment such
as OpenSDRM.

References

1. Chiariglione, L., “Intellectual Property in the Multimedia Framework”, Management of
Digital Rights, Berlin, 2000

2. Jack Lacy, Niels Rump, Panos Kudumakis, "MPEG-4 Intellectual Property Management &
Protection (IPMP) - Overview & Applications Document", ISO/IEC
JTC1/SC29/WG11/N2614, 1998

3. Gregor Siegert, Carlos Serrão, "An Open-Source Approach to Content Protection and Digital
Rights Management in Media Distribution Systems", ICT Conference 2003, Copenhagen
December 2003

4. “Digital Rights: Background, Systems, Assessment”, Commission Staff Working Draft,
Commision of the European Communities, 2002

5. Open Mobile Alliance “Generic Content Download Over The Air Specification”, v1.0 De-
cember 2002

6. Multimedia Description Schemes (MDS) Group, "MPEG-21 Rights Expression Language
WD V3", ISO/IEC JTC1/SC29/WG11/N4816, 2002

185

