
Checking Integrity Constraints in Deductive Systems
based on Production Rules and a Description Logic

Terminology

Jaime Raḿırez and Anǵelica de Antonio

Technical University of Madrid
28660, Madrid, Spain

Abstract. The aim of this paper is to show a method that is able to detect a partic-
ular class of semantic inconsistencies in a deductive system (DS). A DS verified
by this method contains a set of first order production rules, and a description
logic terminology that defines the domain problem. By building an ATMS-like
theory the method is able to give an specification of all the initial Fact Bases
(FBs), and the rules that would have to be executed from these initial FBs to
produce an inconsistency.

1 Introduction

The purpose of this paper is to illustrate a method for verifying the semantic consis-
tency of deductive systems (DS) that deal with production rules and a description logic
(DL) terminology (also called TBox). In this sense, DSs that use a powerful language
for modelling the reasoning process and a DL language for modelling general knowl-
edge about the problem domain are often consideredhybrid reasoning systems. Hybrid
reasoning systems were popular in the 1980’s; lately, the topic has regained attention,
focusing on knowledge bases with a DL component for concept definitions and a logic-
programming component for assertions about individuals [1] [2]. DLs are a family of
languages that are especially proper to model complex constraints related to concepts
structured in hierarchies. On the other hand, the production rules are more suitable to
represent the behaviour of a system, sometimes non-monotonically, expressing contin-
gent properties. DSs based on DLs have been employed successfully in configuration
problems, and they constitute a promising area in the medicine and the database fields.

2 Scope of the method

Our method is able to verify a DS that is formed by a set of production rules and a Tbox.
The TBox is a set of DL formulas whose form can beC v D or C = D whereC and
D are concepts. Moreover, the production rule form is:(x1 ∈ T1, x2 ∈ T2, ..., xn ∈
Tn) (l11, l12, ..., l1w∨ l21, l22, ..., l2v∨, ...,∨ lm1, lm2, ..., lms) → a1, a2, ..., at where
the antecedent part contains a declaration part for the variables used in the rule (xr),

Ramírez J. and de Antonio A. (2004).
Checking Integrity Constraints in Deductive Systems based on Production Rules and a Description Logic Terminology.
In Proceedings of the 2nd International Workshop on Verification and Validation of Enterprise Information Systems, pages 84-86
DOI: 10.5220/0002673300840086
Copyright c© SciTePress

and a disjunction ofm conjunctions of literals (lij); and the consequent part contains
a list of actions (ak). Each variable used in the rule must be declared as an atomic
concept defined in the TBox, soxr ∈ Tr is intended to mean that the variablexr

only can be bound to an individuala s. t.Tr(a) holds. A literal is either a first-order
logic atom or a negated atom. The predicate of an atom corresponds to a DL atomic
concept or a DL atomic role, not necessarily defined in the TBox. Anassertionor fact
is a ground literal. Assertions in a DS are classified into two categories: adeducible
assertionis an assertion that is obtained from the execution of the DS; and anexternal
assertionis an assertion that cannot be deduced by the DS and can only be obtained
from an external source. We will see the Fact Base (FB) as a set of assertions. We
admit actions to be addition actions or deletion actions for assertions. DSs can use two
different approaches for the management of the negation: closed world assumption or
3-valued logic. Each semantic inconsistency that must be considered is represented by
means of an Integrity Constraint (IC). An IC defines a consistency criterion over input
data, output data or input and output data. The IC form is:∃x1 ∈ T1...∃xn ∈ Tn

(l1(scope1) ∧ l2(scope2) ∧ ... ∧ lk(scopek)) ⇒⊥.
The DS is assumed to execute with forward chaining or backward chaining. Explicit
control mechanisms and meta-rules are not considered by the proposed method. The DS
can reason non-monotonically, even, the DS may employ rules of the formp→ ¬p, so
we will situate ourselves quite far from the concept of logical inconsistency as defined
in other works. Hence, we are going to clarify the meaning of logical inconsistency in
this work: alogical inconsistencyis reached when, in order to deduce a pair of facts
F andF ′, it is necessary to assume the truth of a set of contradictory external facts, or
when at any time in the process of deducingF (F ′), the fact¬F ′ (¬F) is deduced, and
the fact F’(F) is not deduced later in the same deductive process. This notion of logical
inconsistency is explained with more depth in [3].

3 Contexts

As the output, the method, for each IC that can be violated, must generate a report
explaining the requirements that the initial FB must fulfill so that it is possible to ex-
ecute, starting from the initial FB, a certain deductive path (sequence of rule firings)
that causes the inconsistency described by the IC. The method will construct an object
calledsubcontextto specify how the initial FB must be and which deductive path must
be executed in order to cause an inconsistency. There can be different initial FBs and
different deductive paths that lead to the same inconsistency. An object calledcontext
will specify all the different ways to violate a given IC. Consequently, a context will
be composed ofn subcontexts. In turn, a subcontext is defined as a pair(environment,
deductive path)where an environment is composed of a set ofmetaobjects, and a de-
ductive path is a sequence of rule firings. A metaobject describes the characteristics
that one object which can be present in a FB should have. We will distinguish three
kinds of objects in a FB: individuals, concepts and roles. Hence, we will consider the
following kinds of metaobjects:Metaindividual(identifier, subinstanceof, roles), Meta-
concept(identifier, individuals)andMetarole(identifier, tuples). In order to describe a FB
object, a metaobject must include a set of constraints on the characteristics of the FB ob-

85

ject. These constraints will be included in the fields of the metaobjects. For instance, the
tuples field will comprise the tuples that must belong or not belong (they will appear as
negated tuples) to the role described by the metarole. Each tuple, in turn, will include
a list of metaindividual names. Lets see an example of an environment describing a FB
in which the formulaOwns(X, umbrella) ∧ Person(X) is true. This environment is
{IND1(, {Person}, {Owns}), IND2 (umbrella, , {Owns}), CON1(Person,{IND1}),
ROLE1(Owns,{(IND1, IND2)})}. If there exists an object in the FB, for each metaob-
ject in the environment, that satisfies all the requirements imposed on it, then the given
formula will be true in the FB.

4 Operation of the method

In order to analyze the consistency of a DS, our method has to compute the context
associated to each IC. If this context results to be empty, that means that there is not any
valid initial FB that leads to the violation of the IC. The method implements a backward
chaining simulation of the real rule firing. The recursive calls finish when, in the pro-
cess of computing the context associated with a fact, this fact is external. Basically, the
method can be divided into two phases. In the first phase, the AND/OR deductive tree
associated with the IC is expanded. The leaves of this tree are rules that only contain ex-
ternal facts. During the first phase, some metaobjects are associated to the object names
and the variables in the rules, and they are propagated from a rule to another one, and
updated in each rule. In this updating process some constraints derived from the literals
and variable declarations are inserted into the metaobjects. Moreover, in this updating
process, the satisfacibility of the constraints in the metaobjects is checked w.r.t. the
TBox. To carry out the satisfiability test, our method relies on the calculus explained in
[4]. The computational properties of this calculus for theAL-languages family are also
discussed in [4].
In the second phase, the metaobjects associated to external facts are inserted in the sub-
contexts and the deductive tree is contracted by means of the context operations (these
operations are explained in [3]). Thus, all the metaobjects generated from external facts
are collected in the context associated with the IC.

References

1. Levy, A.Y., Rousset, M.: Verification of knowledge bases on containment checking. Artificial
Intelligence101(1998) 227–250

2. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating datalog and descrip-
tion logics. Journal of Intelligent Information Systems10 (1998) 227–252

3. Raḿırez, J., de Antonio, A.: Knowledge base semantic verification based on contexts propa-
gation, Notes of the AAAI-01 Symposium on Model-based Validation of Intelligence (2001)

4. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept languages.
Technical Report RR-95-07, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH
Erwin-Schr̈odinger Strasse Postfach 2080 67608 Kaiserslautern Germany (1995)

5. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In Cohn, A.G., Schubert,
L., Shapiro, S.C., eds.: Principles of Knowledge Representation and Reasoning: Proceedings
of the Sixth International Conference (KR’98), Morgan Kaufmann Publishers, San Francisco,
California (1998) 636–647

86

