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Abstract. The selection of relevant features plays a critical role in relevance 
feedback for content-based image retrieval.  In this paper, we propose an ap-
proach for dynamically selecting the most relevant feature space in relevance 
feedback.  During the feedback process, an SVM classifier is constructed in 
each feature space, and its generalization error is estimated.  The feature space 
with the smallest generalization error is chosen for the next round of retrieval.  
Several kinds of estimators are discussed.  We demonstrate experimentally that 
the prediction of the generalization error of SVM classifier is effective in rele-
vant feature space selection for content-based image retrieval. 

1   Introduction 

Relevance Feedback (RF) has been regarded as an efficient technique to reduce the 
semantic gap via human-computer interaction in content-based image retrieval 
(CBIR).  The pioneering works on relevance feedback focus on query point move-
ment and similarity measure refinement [7, 13, 12].  Those approaches are based on 
the Euclidean distance or its variations, thus can be grouped into geometric methods.  
Lately proposed statistical approaches can be divided into probability-based and clas-
sification-based methods.  Probability-based approaches are based on the MAP 
(Maximum A Posterior) criteria, with Cox [5],Vasconcelos [21] and Su [15] as the 
representatives.  During the process of classification-based relevance feedback, a 
classifier is dynamically trained on the user-labeled positive and negative images, 
which then partitions the images in the database into two classes, either relevant or 
irrelevant.  Once relevance feedback is treated as a learning problem, many classifiers 
can be applied, such as support vector machines (SVM) [6, 25], neural networks [26], 
Adaboost [16] and so on.  Meanwhile the two fundamental problems in machine 
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learning, i.e., the selection of relevant features and training samples [1], also become 
important factors in the performance of relevance feedback.  Most research works on 
classification-based relevance feedback can be grouped along these two branches. 

For relevance feedback, the training samples are usually insufficient.  The insuffi-
ciency is two-fold: (1) the number of training samples is too small compared with the 
overall size of image database; (2) the training samples are the nearest ones to the 
query, while images relevant in semantics might be spread out in the entire feature 
space.  Therefore, the training samples are not necessarily representative, and hence 
relevant images far away from the query are very unlikely to be retrieved in the fol-
lowing iterations of relevance feedback.  To make up the small sample problem, some 
works combine unlabeled data with labeled ones for training.  For example, Wu [23] 
proposed Discriminant-EM algorithm within the transductive learning framework.  
While the results are promising, the computation may be a concern for large datasets.  
For the unrepresentative training samples problems, i.e., the labeled most positive 
images are not most informative, active learning may be an effective method.  It tries 
to get more informative samples from users by actively selecting samples and requir-
ing users to label.  Tong and Chang [17] proposed the SVM active learning algorithm 
for relevance feedback in image retrieval.  The points near the SVM boundary are 
used to approximate the most informative points and they are provided to users for 
labeling instead of the most positive images.  In this way, the algorithm grasps the 
user’s query concept accurately and quickly.  Chang proposed the Maximizing Ex-
pected Generalization Algorithm (MEGA) [3].  To ensure that target concepts can be 
learned with a small number of samples, MEGA employs an intelligent sampling 
scheme that can gather maximum information for learning the user’s concepts.  
MEGA judiciously selects samples at each iteration and uses positive samples to learn 
the target concept.  At the same time, negative samples are used to shrink the candi-
date sampling space.  In our previous work [11], we also proposed a relevance feed-
back approach to make the limited training samples more representative.  The basic 
idea is to let the labeling of training samples and the training of the classifier be con-
ducted in two complementary feature spaces respectively.  In this way, the diversity 
of training samples is increased and thus the retrieval performance is improved. 

For the feature selection problem, relevance feedback also has its own special is-
sues.  The dimensions of features used in CBIR are usually high, and several kinds of 
features are often combined to achieve better performance.  Thus selecting the most 
relevant features is necessary to meet the real-time requirement.  However, selecting 
the most relevant features for a specific query image is always a difficult problem in 
CBIR.  Tieu and Viola [16] used more than 45,000 “highly selective features”, and a 
boosting technique to learn a classification function in this feature space.  Weak two-
class classifiers are formulated based on Gaussian assumption for both the positive 
and negative examples along each feature component, independently.  The strong 
classifier is a weighted sum of the weak classifiers as in AdaBoost.  The disadvantage 
of their method is that too many features need to be conducted and stored, thus it is 
not practical. 

In this paper, we propose an approach for dynamically selecting the most relevant 
feature space in relevance feedback.  We employ the widely used classifier, support 
vector machines.  The idea of selecting feature space is intuitive.  During the feed-
back process, an SVM classifier is constructed in each feature space.  The generaliza-
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tion error of each SVM is estimated, and used as a measure for feature space selec-
tion.  The feature space with the smallest generalization error is chosen for the next 
round of retrieval.  Experimental results demonstrate that this method improves the 
retrieval efficiency significantly with a small sacrifice of the retrieval effectiveness.  
A byproduct of our contribution is the comparison of three generalization error 
bounds. 

The rest of the paper is organized as follows.  The support vector machines and the 
estimators of generalization error are briefly introduced in Section 2 and Section 3 
respectively.  The proposed relevance feedback algorithm based on dynamically se-
lecting feature spaces is described in Section 4.  Experimental results are presented in 
Section 5 and the concluding remarks are given in Section 6 finally. 

2   Support Vector Machines 

Support vector machines are based on the Structural Risk Minimization (SRM) prin-
ciple from statistical learning theory [18, 19].  Given the training data ( )ii y,x ，i=1,.., 

n., , , SVM maps the input vectors x into a high-dimensional 

feature space H through some mapping function , and constructs an 
optimal separating hyperplane in this space [2].  The mapping 
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The factor C in (4) is a parameter that allows trading-off between training errors 
and model complexity. 

SVM has been successfully applied to relevance feedback in image retrieval [6, 
25].  An SVM captures the query concept by separating the relevant images from the 
irrelevant images with a hyperplane in a projected space, usually a very high-
dimensional one.  The projected points on one side of the hyperplane are considered 
relevant to the query concept and the rest irrelevant.  Once the classifier is trained, 
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SVM returns k images farthest from the hyperplane on the query concept side as top k 
most relevant images.   

3   The Generalization Performance of SVM 

For classification based relevance feedback, the retrieval performance depends on the 
generalization error of the classifier directly.  The key idea of our approach is to dy-
namically select a feature space for retrieval in each round of feedback, in which the 
estimated generalization error is minimal.  To get an estimate of the generalization 
error, we study several bounds of the expected error probability of SVMs. 

3.1   Radius-Margin Bound  

If n training samples belonging to a sphere of radius R are separable with the corre-
sponding margin M, then the expectation of the error probability has the bound [20] 
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where the expectation is taken over all training sets of size n. 

3.2 The Number of Support Vectors 

Vapnik [18] gives an alternative bound on the actual risk of SVMs: 
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where  denotes the number of support vectors. SVN

3.3 estimator −ξα

This estimator is proposed by Joachims for text classification [8, 9].  −ξα estimators 
are based on the idea of leave-one-out (LOO) estimation, but overcome the computa-
tion disadvantage of LOO.  The estimator is named by the two arguments: ξ  and α .  

 is the vector of training losses at the solution of the primal SVM training problem.  
If a training example lies on the “wrong” side of the hyperplane, the corresponding 
ξ

iξ  is greater than or equal to 1.  The training losses iξ  can be computed as 
(( 0,1max by iii +⋅−= xw ) )ξ .  α  is the solution of the dual SVM problem.  Both ξ  

and  are available after training the SVM at no extra cost. α
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For stable soft-margin SVMs, the −ξα estimator of the error rate is defined as: 

n
dEPerr ≤  with ( ){ }12: 2 ≥+= ∆ ii Rid ξα  (7) 

 
where  is an upper bound on 2

∆R ( ) ( )xxxx ′− ,, KK  for all  and , i.e. x x′

( ) ( )( )xxxxxx ′−≥ ′∆ ,,max ,
2 KKR . 
The key idea to the −ξα estimator is a connection between the training examples 

for which the inequality  holds and those training examples that can 
produce an error in leave-one-out testing.  It can be proved that d is an upper bound 
on the number of leave-one-out errors. 

12 2 ≥+∆ ii R ξα

4   Dynamic Feature Space Selection 

The central idea of our algorithm is based on the relationship between the relevant 
degree of a feature space and the generalization ability of the classifier trained in this 
space.  If the classifier in one feature space achieves smaller generalization error, we 
can say that this feature space is more relevant to the current classification problem. 

Given M features: , denote the combined feature as MΦΦ L,1 0Φ =[ ]. 
Note that all kinds of features are normalized into the same range.  The detailed algo-
rithm can be described as follows: 

MΦΦ L,1

Step 1: The system presents initial results in 0Φ  space and the user labels top k 
images; 

Step 2: In each feature space MΦΦ L,1 , an SVM classifier is constructed sepa-
rately; 

Step 3: Estimating the generalization error of each SVM respectively, denote as 
; M

Step 4: Choosing the feature space in which the generalization error is minimized; 
TT ,,1 L

ii
TJ minarg= , Mi ,,1L=  (8) 

Step 5: In the selected space 
JΦ , SVM classifies all images in the database and re-

turns top k most relevant images for user labeling; 
Step 6: Repeat from Step 2 to Step 5 until the user stops relevance feedback. 
Estimates of the generalization error of SVMs have been employed for feature se-

lection [22].  In their work, feature selection problem can be formulated as a preproc-
essing of the data ( )σ*xx a , { }n1,0∈σ .  Therefore the feature selection problem is 
transferred to calculate suitable parameters σ .  This is done by minimizing some 
estimates of the generalization error of SVMs using a gradient descent algorithm.  
Comparing with their method, our approach is simple and direct, well meeting the 
real-time requirement in relevance feedback. 
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5   Experimental Results 

5.1   Experimental Design  

The image database we used consists of 10,000 images from the Corel dataset.  It is a 
large and heterogeneous image set.  Images from the same category as that of the 
query are used as the ground truth.  Relevance feedback is conducted automatically.  
In the first iteration of feedback, top 30 images are checked and labeled as either 
positive or negative examples.  In the following iterations, the labeled positive images 
are ranked at the beginning, while the negative images are ranked at the end.  All of 
the positive and negative images in each round are accumulatively used. 

The most commonly used kernel function, RBF kernel, is selected for SVMs: 
)exp(),(

2

jiji gK xxxx −−= .  The kernel parameter g needs to be pre-defined.  We will 

choose the best g experimentally for each feature space.  Note that the control factor 
C is set to 100 for all feature spaces.  Since 1),( =xxK  in RBF kernel function,  
in 

2
∆R

−ξα estimator is set to 1. 

5.2   Results on “Bead” Category 

To demonstrate the effectiveness of dynamically selecting feature space more clearly, 
we take the “bead” category as an example.  “Bead” category contains images of 
beads with different colors and shapes, as shown in Figure 1.  However, these images 
are similar in texture.  That is to say, texture feature is relevant while color feature is 
irrelevant for this category. 
 

    
Fig. 1. Random images from bead category 

Two features are used in this experiment: Color Histogram (CH) [24] and Gabor-
based texture feature (Gabor) [10].  Since the most relevant feature for “bead” cate-
gory is texture feature, the relevance feedback algorithm is expected to select the 
Gabor texture feature dynamically to perform the retrieval.  Table 1 listed the selected 
kernel parameters for each feature space by experiments, where CH-Gabor represents 
the feature concatenated by CH and Gabor. 

Table 1. The parameters of SVM in each feature space 

 CH Gabor CH-Gabor 
g 2.0 0.5 1.0 
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We compared the retrieval performance of three methods on “bead” category.  The 
“alternating model” refers to the method that alternates the feedback and retrieval 
operation between CH color feature and Gabor texture feature [11].  The “flat model” 
means that CH and Gabor features are merged into a new feature CH-Gabor for re-
trieval and feedback.  The “dynamic model” means that at each round of feedback, 
the retrieval operation is switched to the most relevant feature space according to the 
bound of generalization error.  The bound used in Figure 2 is −ξα estimator.  For all 
three methods, SVM based classification is used as feedback approach.  CH-Gabor 
feature space is used at the first retrieval to give the three methods a same start point. 

Figure 2 shows the average retrieval performance of three methods on 100 bead 
images.  From Figure 2, we can observe that: 

• The performance curve of the alternating model waves with the relevance 
feedback going on.  The performance drops when the retrieval operation 
is changed into CH color feature space; meanwhile, the performance is 
improved largely when the retrieval is performed in Gabor texture feature 
space.  The reason is that for the current query concept, CH feature is 
weakly relevant even irrelevant while Gabor texture feature is strongly 
relevant. 

• The performance of the dynamic model and the flat model has a consis-
tent increase.  Both methods improve the initial retrieval performance 
significantly after several rounds of relevance feedback.  The dynamic 
model lags behind the flat model because it cuts the weakly relevant fea-
tures for speed up. 
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Fig. 2. Performance comparison on “bead” category 

As to the computation efficiency, we compared the average retrieval time for each 
query image during the five rounds of relevance feedback.  The cost time of the flat 
model is 8.80 seconds, the alternating model 3.65 seconds and the dynamic model 
3.96 seconds.  The above results demonstrate that the dynamic model improves the 
retrieval efficiency significantly with only a small sacrifice of the retrieval effective-
ness. 

In order to check whether the dynamic model can select the most relevant feature 
space correctly during the relevance feedback, Table 2 compares the selected times of 
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two feature spaces at each round of RF.  For total 100 queries, at the first round of 
RF, only 60 ones are judged to be suitable in Gabor texture feature space.  However, 
as the feedback goes on, the Gabor texture feature space is selected more frequently.  
At the fifth round of RF, only 3 queries are retrieved in CH color space.  This demon-
strates that in the feedback process, the dynamic model selects the relevant texture 
feature space correctly.  The non-ideal performance at the first round of RF can be 
explained by the insufficient samples, which make the estimation inaccurate. 

Table 2. The selected times of two feature spaces at each round of RF 

 RF1 RF2 RF3 RF4 RF5 
CH 40 16 11 5 3 

Gabor 60 84 89 95 97 

5.3   More General Results 

The purpose of this experiment is to compare the effectiveness of three generalization 
bounds.  In this experiment, the query set is expanded into the following ten catego-
ries: aquarelle, bead, building, dish, flag, horse, mountain, road sign, ski and sky, 
totally 100 images.  Three kinds of low-level features are used: Color Histogram 
(CH) [24], Color Moments (CM) [14] and Wavelet based Texture feature (WT) [12].  
The kernel parameters for each space are listed in Table 3.  At each round of RF, the 
dynamic model selects one of them according to the three measures described in 
Section 4.  The alternating model changes the space according to a fixed order: CM-
WT-CH.  Other orders (eg. CM-CH-WT) give similar results, so we do not present 
here. 

Table 3. The parameters of SVM in each feature space 

 CH CM WT 
g 2.0 5.0 5.0 

 
We can obtain the following observations from Figure 3: 

• All three bounds of generalization error are useful to the feature space se-
lection.  The dynamically selecting feature space methods are better than 
the fixed alternating feature space methods. 

• Among the three kinds of bound, the −ξα estimator performs best, the 
number of support vectors performs worst, and the radius-margin bound 
performs between them. 

Regarding the computation efficiency, both the number of SVs and the −ξα esti-
mator can be obtained at no extra cost immediately after training SVM.  However, the 
radius-margin bound needs a little more time to solve the optimization problem for 
radius R.  Therefore, we recommend −ξα estimator considering both its effective-
ness and efficiency. 
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Precision ( scope = 50 ) vs. Iterations of RF
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Fig. 3. Performance comparison results over general categories 

6   Conclusion 

We have proposed an approach for dynamically selecting feature space in rele-
vance feedback.  During the feedback process, a support vector machine is con-
structed in each feature space.  The generalization error of each SVM is estimated.  
Among all feature spaces, the one with the smallest generalization error is chosen for 
the next round of retrieval.  The experimental results demonstrated the proposed algo-
rithm could improve the retrieval efficiency significantly with only a small sacrifice 
of the retrieval effectiveness.  We also studied three estimates of the generalization 
error: the radius-margin bound, the number of support vectors and the −ξα estima-
tor.  The −ξα estimator is the best in terms of efficiency and effectiveness. 
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