
An XML framework for multi-level access control in

the enterprise domain

Ioannis Priggouris1, Stathes Hadjiefthymiades1, Lazaros Merakos1

1 University of Athens, Department of Informatics & Telecommunications,

Panepistimioupolis, Ilissia, 15784,

 Athens, Greece

Abstract. Modeling security information has always been a fundamental part

of every security system. A robust and flexible model is needed in order to

guarantee both the easy management of security information and the efficient

implementation of security mechanisms. In this paper, we present an XML-

based framework, which can be used for controlling access to computer sys-

tems. The framework is mainly targeted to enterprise systems and aims to pro-

vide a fine-grained access control infrastructure for securing access to hosted

services. The proposed framework supports both role-based and user-based ac-

cess control on different levels. Although, the discussion focuses mainly on the

data model, access control schemes and guidelines for implementing fitting se-

curity architectures are also provided.

1 Introduction

Secure service access comprises an area of extensive research and interest in the re-

cent years. Different mechanisms and techniques have been adopted with the purpose

of securing access to computer systems. However, apart from the implementation of

the security mechanism a crucial issue in designing a robust security framework is the

structure of the security meta-information, which is consulted in order to verify eligi-

bility of a user for entering the system.

In this paper we present a framework, which can be used for implementing authen-

tication and access control mechanisms over heterogeneous IT infrastructures. The

framework defines the data structures needed for storing security information, as well

as the actual process for implementing authorization and controlling access to specific

resources. The data model specified using XML [7], which makes the architecture

portable over different information repositories (xml files, RDBMSs, Directory Ser-

vices, etc.). Our architecture is targeted to enterprise systems hosting multiple ser-

vices. Its design is focused on providing a flexible scheme, which could sufficiently

support such multi-service environments.

The rest of the paper is structured as follows. In section 2 a brief overview of re-

lated work and limitations of existing access control schemes is presented, followed

by the description of our proposed model in section 3. The architectural aspects of the

security infrastructure follows in section 4 and the paper concludes with a summary

of the innovation achieved and a discussion on its potential application domain.

Priggouris I., Hadjiefthymiades S. and Merakos L. (2004).
An XML framework for multi-level access control in the enterprise domain.
In Proceedings of the 2nd International Workshop on Security in Information Systems, pages 227-236
DOI: 10.5220/0002675302270236
Copyright c© SciTePress

2 Technology overview and related work

The simplest form of access control is the client authentication mechanism, which,

however in its primitive form provides a flat security model. Nevertheless it can be

augmented, with support for roles, in order to provide a multi-level security model,

where access to individual resources is controlled separately. A role is an internal

identity of the system, which defines the resources that a specific user is allowed to

access. Role-based security is an elegant way to provide user authorisation and user

access checks for an application. A user belonging to a particular role can access

code, software and resources for which permissions are granted to the role. Incorpo-

rating roles makes security management much more flexible, while the security

framework is rendered capable of supporting different security levels.

Role Based mechanisms for securing access to resources attracted significant re-

search interest after 1990, when the concept of Role-Based Access Control (RBAC)

emerged rapidly as a proven technology for managing and enforcing security in large-

scale systems. A significant number of research papers on RBAC models and ex-

perimental implementations has been published in the recent past [1], [2], [3], [4], [5],

[6]. A certain shortcoming of all these models is that they define RBAC mechanisms

based on the assumption that roles have global scope. This assumption makes them

inadequate for large enterprise environments, hosting multiple services, which are

administered from different vendors. In such environments, using global roles is not

advisable as their management may prove significant problem for the potential

administrator, especially if the number of hosted services increases substantially.

Evidently, a more flexible approach for controlling access to the resources hosted by

such systems is needed.

3 Security Model

The model we propose is much more fine-grained than those available today. Each

service defines specific roles, which are authoritative only within its context, having

no impact on other services. Moreover, as discussed below, our architecture achieves

all the above without restricting the potential namespace of the roles or the services.

These characteristics are ideal for service provisioning platforms or other systems

hosting varied functional entities, as it reduces drastically the administrative overhead

needed for managing security roles. Moreover the model allows distributed manage-

ment schemes to be adopted both for roles definition and for security enforcement. In

such schemes, separate administrative entities can be responsible for specifying roles

within a single service and assigning users to them, without caring if these roles have

already been specified inside other services also.

Before delving further into the design aspects of the framework we will try to for-

malise it using propositional calculus. Our aim is to provide the basis for the design

work that follows as well as a notation reference for future research in the same area.

Similar formal approaches have been introduced in the past for equivalent architec-

tures, such as the OASIS role-based access control framework [12]. Definitions of

228

basic concepts, like services, methods, roles and users, which will help the reader

understand better the security architecture are also presented.

The model is based upon 6 basic sets:

U: set of users

S: set of services

M: set of methods

G: set of method signatures

R: set of roles

N: set of role names

A simple user u is an element of U (Uu) and is defined as an entity, interacting

with the protected computer system. The user usually is a human; however client

programs or other computer systems can also be considered as users.

A service s is an element of S (Ss), and corresponds to a software component

running on a computer system. Borrowing the Object oriented terminology the ser-

vice is the equivalent of an object and consists of several methods, which are the

actual resources that need to be protected; since no other access in allowed to the

service entity. Each method has a signature Gg , which consists of its name and

the list of invocation parameters. We won’t delve further into the definition of the

method signature, as it is not of prime importance to our model. A significant con-

straint of the model, we have presented so far, is that method signatures, although

unique within the scope of each service, are not unique within the computer system.

In order to surpass this constraint we use the pair GSgs, introducing the con-

cept of method m as an element of M (Mm), which apparently bears global

uniqueness because GSM . Moreover, we denote as sM the subset of methods

belonging to the same service s. Evidently ks mmmM ,..., 21 where Mmi for

ki1 and GsM s for each Ss .

A role name n is an element of N (Nn) and defines a logical label, which is

used within a computer system for diversifying access to the hosted services. A role

name is unique within the scope of its defining service. However, it can be re-used in

the context of another service. In order to avoid confusion between the two defini-

tions our model uses the pair NSns, in order to define a globally unique role

Rr .

In order to achieve the objective of protecting critical resources each role r is asso-

ciated both with methods and users. Association with methods is used in order to

determine the resources to be protected and will be hereafter referred to as role dec-

laration. Association with users, on the other hand, defines the access rights to the

method and will be referred as role assignment. In a more formal notation, a role

declaration corresponds to a pair of MRmr, , while a role assignment to an-

other pair URur, . In order for the user u to have access to a certain service

method m both a role declaration and a role assignment for the same role r must have

been defined within the model. Another association that can be defined in our model

is that between users and services. This association, which will be referred to as ser-

vice eligibility, is expressed in the form of pairs of USus, and indicate that a

user u is eligible to access the service s.

229

4 Architecture- Framework design

In this section we provide the foundations of our architectural approach and issues

considered during the design phase. As already mentioned the security framework,

supports the following 3 basic security operations:

Authentication,

Role-Based Access Control (RBAC)

User-Based Access Control (UBAC)

Authentication is not actually covered by our model, but it is used in order to de-

termine the identity of a user. The authentication mechanism undertakes the task of

establishing a security context, which will carry all the privileges assigned to the

specific user (e.g., roles). Of course these roles are specified inside the framework

and should somehow be mapped to the specific application domain (e.g., the ser-

vices). However this is an implementation specific issue, which should be considered

when implementing the discussed framework. The simplest way to achieve this map-

ping is by hard-coding them inside the applications. Enterprise software offers alter-

native much more flexible ways, by using deployment descriptors ([9], [10]).

User-based access control is supported in two different levels:

A low-level access control, which enables controlled access to the whole in-

frastructure.

A high-level access control, providing a more fine-grained mechanism,

which allows controlling access to a specific set of resources (i.e., a single

service).

User-Based Access C ontrol

m apping

Registry

Role-based access control

High-level Access Control

Low -level Access Control
Authentication & Access Control

fram ew ork

services

repository

Users

repository

User

Definition

Scheme

Service/Role

Definition

Scheme

A
u

th
en

ti
ca

ti
o
n

Fig. 1. Overall architecture

Role-based and user-based access control work independently of each other but

they both rely on successful user authentication. Depending on the pursued function-

ality, the framework can be configured to enforce role-based or user-based access

control only. The mechanisms could also stack in order to provide an integrated

multi-level access control infrastructure. The proposed stack order is defined by the

arrow in figure 1; low-level user-based access control is the most coarse security

mechanism so it is the first to be invoked while role-based the most refined one and

therefore it is placed last.

Delving inside the heart of the security architecture we find the Registry module.

The Registry holds all information pertaining to potential users of the system, running

230

services and their roles. Moreover, the mapping between users and roles is harbored

in it. The Registry is updated every time a new service (i.e., bundle of resources) is

installed on the protected system. It is also updated each time a new user is defined as

well as whenever the association between users and services is redefined. In subse-

quent sections the internal structure of the Registry will be presented in detail along

with the key aspects that differentiate its design and allow it to fit in dynamic multi-

service environments.

4.1 Registry

The Registry accommodates two repositories: one for services and roles and another

for the users. Each Repository contains a set of entries of the same type. In order to

populate the two repositories, specific schemes defining the structure of each stored

element were designed. Specifically we defined:

The User definition scheme

The Service/Role definition scheme

Other information contained in the Registry includes the mapping between ser-

vices, roles and users.

User definition scheme. This scheme specifies the way a user entry is stored. User

entries act as a container for user-specific data. The defined scheme is fairly simple

and can be seen in figure 2. Although the specification comes in the form of an XML

schema [8], the presented framework does not consider any particular

implementation. Thus, possible implementations may include xml files, RDBMS

tables and LDAP objects.

Each user entry is identified by the unique id attribute and also has a unique user-

name value. The framework uses the id attribute for internally discriminating between

users, while the username is an easily memorized alias of the id. The scheme also

defines an optional element for storing certificates, which can be used for supporting

certificate-based client authentication. The rest of the fields (name, surname, other-

info, addresses etc.) are rather trivial and are mainly used for storing supplementary

information for each user.

Service/Role definition scheme. The Service definition scheme specifies the

structure of the service entry, which provides a convenient storage scheme for

service-specific data. The scheme can store various information elements pertaining

to the service, as seen in figure 3. The existing information elements were adopted in

order to apply the security framework in a service provisioning platform, where

services were exposed through a web interface. However, the exact definition of the

service scheme can vary according to the application domain as other applications

may require additional data to be stored or render some of the existing elements

obsolete.

The specification of the roles element is presented in figure 4. Individual roles are

identified by an id attribute. The id corresponds to the role name (n), as defined in the

formal model, whose uniqueness within the scope of the same service is enforced by

231

the proposed service specification. Embedding each role inside the service entry al-

lows for the automatic pairing between service and role ids (i.e, the (s,n) pairs identi-

fying the globally unique role r). A status attribute is supported for each role, allow-

ing its enablement or disablement on-demand. The role is also the entity, which con-

tains the actual association with the users (i.e. the role assignment that was defined in

the formal model). In order to avoid duplicate member entries for each role, the corre-

sponding element is marked as unique. The values of the member elements corre-

spond to the ids of the users as the latter are defined inside the registry.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="addresses">

<xs:complexType>

<xs:all maxOccurs="unbounded">

<xs:element name="address" type="xs:string" minOccurs="0"/>

</xs:all>

</xs:complexType>

</xs:element>

<xs:element name="user">

<xs:complexType>

<xs:all>

<xs:element name="username" type="xs:string"/>

<xs:element name="password" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

<xs:element name="surname" type="xs:string"/>

<xs:element name="certificate" type="xs:string" minOccurs="0"/>

<xs:element name="otherinfo" type="xs:string" minOccurs="0"/>

<xs:element ref="addresses" minOccurs="0"/>

</xs:all>

<xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="users">

<xs:complexType>

<xs:all maxOccurs="unbounded">

<xs:element ref="user" minOccurs="0"/>

</xs:all>

</xs:complexType>

<xs:key name="idUniqueness">

<xs:selector xpath="user"/>

<xs:field xpath="@id"/>

</xs:key>

<xs:key name="usernameUniqueness">

<xs:selector xpath="user"/>

<xs:field xpath="username"/>

</xs:key>

</xs:element>

</xs:schema>
</xs:schema>

Fig. 2. User entry specification Fig. 3. Service entry specification

The service specification contains also the appropriate information needed by the

framework’s access control mechanisms. Linking to these mechanisms is achieved

through the defined accessControl element. The aforementioned element appears in

two different levels within the service specification (see figure 3); one at the services

level, which intends to cover low-level access to all possible resources (i.e., to the

whole protected system) and a second one at the service level. The latter realises the

service eligibility association, defined in our model, thus implementing the high-level

access control that was defined in the beginning of the section.

The defined schema for the accessControl element is presented in figure 5. In or-

der to support a flexible definition framework, the schema has the option of choosing

between specifying either a list of users eligible to access the controlled resource or a

list of non-eligible users. The appropriate information is stored under the allowed or

notAllowed elements respectively, in the form of sets of user ids. The proposed

scheme validates that the same user does not appear sin two different areas inside the

same accessControl element, thus avoiding erroneous situations, where two conflict-

ing restrictions apply to a single user.

232

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleTypename="sBoolean">

<xs:restrictionbase="xs:NMTOKEN">

<xs:enumeration value="ENABLED"/>

<xs:enumeration value="DISABLED"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="member" type="xs:string"/>

<xs:element name="members">

<xs:complexType>

<xs:all maxOccurs="unbounded">

<xs:element ref="member"minOccurs="0"/>

</xs:all>

</xs:complexType>

<xs:uniquename="NoDuplicateUsersPerRole">

<xs:selector xpath="member"/>

<xs:field xpath="."/>

</xs:unique>

</xs:element>

<xs:element name="role">

<xs:complexType>

<xs:all>

<xs:element name="description" type="xs:string"minOccurs="0"/>

<xs:element name="otherinfo" type="xs:string"minOccurs="0"/>

<xs:element ref="members"minOccurs="0"/>

</xs:all>

<xs:attributename="id" type="xs:string"use="required"/>

<xs:attributename="status" type="sBoolean"use="optional"default="ENABLED"/>

</xs:complexType>

</xs:element>

<xs:element name="roles">

<xs:complexType>

<xs:all maxOccurs="unbounded">

<xs:element ref="role"minOccurs="0"/>

</xs:all>

</xs:complexType>

<xs:uniquename="uniqueRolesPerService">

<xs:selector xpath="role"/>

<xs:field xpath="@id"/>

</xs:unique>

</xs:element>

</xs:schema>

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="sBoolean">

<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="ENABLED"/>

<xs:enumeration value="DISABLED"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="notAllowed">

<xs:complexType>

<xs:all maxOccurs="unbounded">

<xs:element name="user" type="xs:string" minOccurs="0"/>

</xs:all>

</xs:complexType>

</xs:element>

<xs:element name="allowed">

<xs:complexType>

<xs:all maxOccurs="unbounded">

<xs:element name="user" type="xs:string" minOccurs="0"/>

</xs:all>

</xs:complexType>

</xs:element>

<xs:element name="accessControl">

<xs:complexType>

<xs:choice>

<xs:element ref="allowed" minOccurs="0"/>

<xs:element ref="notAllowed" minOccurs="0"/>

</xs:choice>

<xs:attribute name="status" type="sBoolean" use="optional" default="ENABLED"/>

</xs:complexType>

<xs:unique name="uniqueUserAllowed">

<xs:selector xpath="allowed/user"/>

<xs:field xpath="."/>

</xs:unique>

<xs:unique name="uniqueUserNotAllowed">

<xs:selector xpath="notAllowed/user"/>

<xs:field xpath="."/>

</xs:unique>

</xs:element>

</xs:schema>

Fig. 4. Roles specification Fig. 5. Access Control specification

An obvious omission, from our formal model is that no information concerning

service methods is defined within the introduced XML specifications. Apparently, no

role declarations, as defined in the formal model, exist but roles are directly associ-

ated with services instead of methods. Role declarations were deliberately not in-

cluded in our proposed schemes as there are already related XML specifications,

which are widely used today. The most noteworthy of these schemes is the EJB 2.x

declarative security specification [10], [11] an example of which is cited in figure 6.
<assembly-descriptor>

<method-permission>

<role-name>Administrator</role-name>

<method>

<ejb-name>PositioningService</ejb-name>

<method-name>getLocation</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</method>

</method-permission>

</assembly-descriptor>

Fig. 6. Declarative security definition in EJB 2.0 (excerpt from the EJB deployment descriptor)

4.2 Security mechanisms

A fundamental part of the security framework is the security context, which is created

after a successful id is detected. The security context is an internal memory object

indexed by the unique user id which holds all security information related to the spe-

233

cific user. An example of its structure (i.e., supported fields) is presented in figure 7.

Following its creation, the security context is updated with the appropriate security

information for the designated user.
Id u1235678

System access OK

Accessible

Services

Service1

Service4

…

roles: service1.role1

service2.role1

service2.role4

Valid until 12/4/2003 11:52

Fig. 7. Security Context definition

Each entry of the security context is filled with the appropriate information by the

corresponding security mechanism. Low-level access control sets the system access

field, while high-level access control updates the accessible services field with all

services available to the user. Finally the role-based authorization process retrieves,

from the registry, all the available roles for a specific user and inserts them in the

roles field. The role of the security context is to provide some kind of caching

mechanism for the information pertaining to the authenticated user in order to speed

the authorization and access control process. It can be eliminated without any impact

to the pursued functionality, but then each security mechanism will need to consult

the Registry for every request submitted to the protected system, even if this request

is the same with a previous one. The whole access control process is depicted in fig-

ure 8.

New user

Usernam e-

password

or

certificate

authentication

ID detected

successfully?

No

Low-level user-

based access

control

ID eligible?

Failed to access

the resource

Access the

resource

No

Yes

High-level user-

based access

control

Yes

ID eligible?

No

Role based

access control
Yes

Registry

ID authorised?No

Yes

Security

context (ID)

Create security

context

Fig. 8. Access control process

User-Based Access Control. It includes the low level and the high-level user-based

access control mechanisms.

234

Low-level access control. The low-level access control is the first security mecha-

nism, which can be applied in order to restrict/allow access to the whole protected

system. The mechanism is automatically enabled if the accessControl element of the

services portion of the Registry is present and set to ENABLED.

Low-level access control, searches all the entries under the aforementioned ele-

ment for a member value that matches the id of the user who accesses the system.

Depending on whether the id is a member of the allowed or notAllowed element the

user can be granted or refused access to the rest of the resources. The mechanism

takes also provision for updating the system access field of the security context with a

Boolean YES or NO value. When a stack access control architecture like the one

depicted in figure 1 is adopted, further invocation of subsequent access control

mechanisms rely on the result produced by this security mechanism.

High-level access control. High-level access control is the second mechanism, which

can be enforced. It performs the same operations with the low-level control, which

was discussed in the previous section but on the service level this time. Depending on

the implementation approach, high-level access control could process the whole Reg-

istry (i.e., all service entries) once and update the security context accordingly or

perform this check on a per request basis each time access to a new service is re-

quested. Before invoking a certain bundle of resources (e.g. a service), the mecha-

nism checks whether the user is eligible to access the specific service and authorizes

his further admission inside the service. Hereafter, the last mechanism (RBAC), un-

dertakes the task of handling the user request.

Role-based Access Control. Supporting different roles per service is the key issue

that differentiates the proposed framework from other security infrastructures. The

RBAC mechanism performs a two phases process in order to determine if a user is

eligible to access a resource inside the multi-service system.

In the first phase the roles of the authenticated user are retrieved and stored inside

the security context. All services inside the Registry are sequentially processed, and if

the particular user owns a specific role, the corresponding role name is appended in

the list of roles of the security context. A role object consists of the role name, which

is specified by the service administrator/creator, prefixed by the service name, thus

forming the role r as defined in our model. The latter is unique inside the Registry,

thus, guaranteeing also the global uniqueness of the role.

The second phase involves the actual access control process. At first, the required

roles for accessing the resource/method are determined. This determination could

vary depending upon the used role declaration scheme. For example, in J2EE envi-

ronments required the roles could be retrieved, by searching inside the deployment

descriptor (see figure 6). Subsequently, the required roles are checked against those

present in the security context, which were retrieved during the first phase. If a match

is found the user is authorized to access the resource. The second phase takes place

every time a certain resource is accessed, while the first one only once when the

RBAC mechanism is firstly invoked.

235

5 Conclusions

In this paper, we presented a security framework for controlling access to the critical

resources of a computer system. We focused mainly on the definition of the appropri-

ate data structures, which will accommodate the information needed for performing

the required security checks. A configurable 3-layer resource access control mecha-

nism, which allows implementation of security mechanism on two levels was also

introduced. On the first level a coarse user-based access control is performed on the

system’s level, while on the second level a fine-grained role-based access control is

performed on the service level. The most significant achievement of the framework is

that it allows the definition of role names inside a certain service, without influencing

other services running on the same computer system; yet each role maintains its

uniqueness throughout the whole system, thus allowing the adoption of distributed

(i.e., on a service level) role management schemes. The aforementioned characteristic

is extremely important in enterprise systems and multi-service environments, as it can

significantly reduce the administrative overhead needed for controlling access to their

resources.

References

1. D. Ferraiolo, D. R. Kuhn: “Role based access control”.,In Proceedings of the 15th Annual

Conference on National Computer Security. National Institute of Standards and Technol-

ogy, Gaithersburg, MD, 554–563,1992.

2. L. Guiri, “A new model for role-based access control”, In Proceedings of the 11th Annual

Conference on Computer Security Applications (New Orleans, LA, Dec. 1995).

3. L. Guiri, P. Iglio, “A formal model for role-based access control with constraints”, In

proceedings of 9th IEEE Workshop on Computer Security Foundations, Ireland, 1996.

4. S. Osborn, R. S. Sahdhu, Q. Mutanawer, “Configuring role-based access control to en-

force mandatory and discretionary access control policies”. ACM Trans. On Information

System Security 3, 2 (May 2000).

5. I. Mohammed, D. M. Dilts, “Design for dynamic user-role-based security”, Computer

Security 13, 8, 661–671, 1994.

6. J. Park, R. Sandhu, G. Ahn, “Role-Based Access Control on the Web”, ACM Transactions

on Information and Systems Security (TISSEC), Volume 4, Number 1, February 2001.

7. M. Birbeck et al, “Professional XML”, Wrox Press Inc, 1st edition, 2000.

8. J. Duckett et al, “Professional XML schemas”, Wrox Press Inc, 1st edition, 2001

9. Cattell R. et al, “Java 2 Platform, Enterprise Edition: Platform and Component Specifica-

tions”, Addison-Wesley Pub Co, 2000.

10. Roman Ed et al., “Mastering Enterprise JavaBeans” 2nd Edition, Wiley Computer Pub-

lishing, 2002.

11. Enterprise Java Beans Specification version 2.1,Final Release, Sun Microsystems, 12

November 2003.

12. W. Yao, K. Moody, J. Bacon, “A model of OASIS Role-Based Access Control and its

Support for Active Security”, proceeding of SACMAT 2001, Chantilly, Virginia, USA,

May 3-4, 2001.

236

