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Abstract. We have developed an approach to apply formal methods to repre-
sent program source code as a model and use an automated theorem prover to 
detect runtime violations by doing static analysis. Unlike other proof-based 
program verification approaches, this approach is based on a hypothesis to de-
velop the implicit specification information, such as invariants, preconditions, 
postconditions, then using an automated theorem prover to verify the correct-
ness of each statement in the program. Our research work can catch those run-
time exceptions that are beyond the capability of control flow-based analysis in 
compilers. 

1   Introduction and Objective 

Error detection in programs has always been one of the most active areas of re-
search in computer science. The reason is that people expect software to be error-free, 
safe and reliable [6], but even an elaborate program may have runtime violations, 
potentially causing severe results. Currently, software testing is still the No.1 method 
to find the errors in program, but it is an expensive and unreliable process. Research-
ers hope to develop some automatic tools, which can find those runtime violations 
without running the program. In the past, many researchers have been attempting to 
realize this goal, and some progress has been made. Modern compilers use control 
flow-based analysis to scan the source code and report some runtime violations which 
originally could not be caught by traditional compilers.  Although the analysis in 
those compilers are quite limited due to the lack of reasoning capability and leave the 
majority of violations to the runtime environment, they show the feasibility and po-
tential success of applying static analysis to detect runtime violations. Using model 
checking technology to do software verification also attracts many researchers. The 
approaches that use reasoning technology to do logic proof based analysis have the 
potential to perform modular analysis, which can be applied to a variety of software 
systems. Many research efforts follow this strategy, including HOL [2], PVS [4], and 
ESC [5]. The problem of applying the existing proof-based tools in industry is that 
the program specification, which is necessary to the verification process, needs to be 
explicitly provided by programmers.  
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This paper addresses a new logic proof-based approach, which we call the Hy-
pothesis-Based Approach, to do static analysis of programs as a way of detecting 
most runtime violations. By discovering the implicit program specification, the verifi-
cation process as a whole is fully automatic and does not require programmers to do 
extra work to accommodate our approach and tools. 

We introduce an approach based on the generation of hypotheses to develop the 
implicit program specification, such as class invariants, method preconditions, post-
conditions, then use an automated theorem prover to verify the correctness of each 
statement in the program.  

In this research project, we chose Java [13] as the target language and chose null 
pointer dereference and array access out of bound exceptions as the runtime violation 
categories to conduct research and instrumentation. Notice that both the approach and 
tools are not restricted to these runtime violation categories; both are extensible and 
capable of handling other categories. One important step in the application of formal 
methods in industry is to introduce some practical solution for the problem to be 
solved. In our research, we remove the guarantee that we will report all of the poten-
tial violations, instead we provide a practical way to find majority of them in a rea-
sonable time and using reasonable computation resources. 

2   Hypothesis Approach  

The basic software verification process comes from the well-known Hoare Triple 
[3]. Obtaining the complete program specification for each statement is not feasible 
unless programmers describe their design and intention explicitly and thoroughly. But 
as mentioned before, the goal of our approach is to detect the majority of runtime 
violations within a specific runtime violation category. The program specification we 
need are constrained to some particular forms of predicates. We do not attempt to 
verify the functionality of a program. 

The process of using hypotheses to construct specification contains the following 
three steps: according to the specific violation category, generalize the form of predi-
cates which might be the candidates and the rules to verify those candidates; for the 
specific program, construct hypothesises using the general form; verify the hypothesis. 

Fig. 1 illustrates the components in our approach. Hypothesis Generator uses a 
heuristic mechanism to generate the logic condition hypotheses. These predicates are 
not randomly chosen, they have to show a reasonable probability to be real program 
specification. Hypothesis Verifier filters all the hypotheses generated by Hypothesis 
Generator using some specific rules in order to output the valid program specification 
that are consistent with the source code. Static Analyzer accepts both the source code 
and the program specification from Hypothesis Verifier, uses the automated theorem 
prover to check the validity of each statement. 

Fig. 1 also shows the basic factors that impact the hypothesis heuristic mechanism. 
These hypotheses essentially depend on the violation category that we are interested 
in, for example, for null pointer exception, the basic element in hypothesis is in the 
form of 

 obj != null     where obj is an object variable. 
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In addition, the logic condition type also affects the heuristic algorithm. For exam-
ple, we are using different methods to construct class invariants and loop invariants. 
The logic condition type also determines the algorithms used to validate the hypothe-
ses. In the rest of this section, we illustrate how to combine those factors to create a 
heuristic hypothesis  

A hypothesis-based approach is a general approach, we are not restricted to only 
the following applications and can extend its use in the future research 

2.1   Constructing Assertions 

We assert the postconditions for a statement by looking at the next statement. For 
        S; {Q} S’ 
where S, S’ are statements; Q is the expected postconditions after execution of S;  
We construct some assertions (preconditions for S’) in order to make S’ valid. We 

hypothesize those assertions as {Q}, the postconditions after execution of S. 
For null-pointer, if the statement S’ contains any expression in the following form: 
      v.m(….)    where v is an object variable;  m is an method which can applied to 

v 
We construct {Q} by using {v != null}, otherwise {Q} is simply true. 
For array bound checking, if the statement S’ contains any expression in the fol-

lowing form: 
      arr[i]        where i is an integer variable;  arr is an array object;  
We construct {Q} by using { i>=0 ∧ i < arr.length }, otherwise {Q} is simply 

true. 

2.2   Constructing Precondition  

We hypothesize some invariants for each violation category. If a hypothesis can be 
proven to be true, then it is part of the class invariants, and also part of the precondi-
tions of public methods. 

One key to determining the class invariants is the generation of hypotheses [7]. 
For null pointer, for each object field obj in the class, we construct the hypotheses 

obj != null . 
For array bounds checking, we are interested in a predicate regarding the size of 

the array that can be used as invariant. For an array type of field arr with length 
arr.length and initial size, we are trying to formulate a hypothesis like arr.length >= 
size. 

2.3   Proving Hypotheses  

Given the following form of class structure: 

     class C { C1, C2, … Cn, M1, M2, …, Mm} 

where Ci  is the ith constructor; Mk  is kth method in class 
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CP:  The conditions to be held before running each constructor. 
Hj:  The jth hypothesis for class invariants 

 
Fig. 1.  Basic Components In Hypothesis-Based Approach 
 
If    ∀i: 1..n • CP ⇒ wp(Ci, Hj)   ∧  ∀k: 1..m • CICj ⇒ wp(Mk, Hj)   
Then Hj is an invariant for that class and a precondition for each public method. 

After getting the invariants for the class, we can use them as the preconditions for 
each public method, and begin the proving process for each statement by calculating 
the weakest precondition from the assertion to the top of the method. 

3   Experiments 

In order to show the project feasibility and evaluate our approach, we have devel-
oped a prototype, which includes the special analysis mechanism for null pointer and 
array access out of bound, the complete Java coverage, an automated theorem prover, 
the side effect eliminating mechanism and the inter-method and inter-class invocation 
analysis. 
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As described before, the intractability of Automated Theorem Prover is an impor-
tant issue to solve. We integrated symbolic algebra calculation as part of our auto-
mated theorem prover, which greatly reduces the burden of proving process.  Also we 
use a special prove strategy to handle the specific type of predicate we construct, for 
example v != null.  According to our test, this theorem prover can provide an effec-
tive mechanism to prove predicate in an efficient way. 

Although limitations exist in the current prototype, we receive encouraging results 
when applying the prototype to analyze around 200 small test Java programs, which 
are made manually. For those test programs, our prototype generate a 100% correct-
ness on the analysis, that shows the current prototype does exactly what we expect.  

In order to evaluate the real capability of our prototype and approach, we develop 
a mutation mechanism to generate test cases automatically. The current mutation 
mechanism take the java source code as input, then scan all the “new” statement, 
remove each once to output a mutated version. By this way, we simulate the common 
fault made by programmers. 

We applied this mutation mechanism on 130 java programs and generate 343 mu-
tated versions with different kind of runtime violations. Among all the experimental 
cases, including both the original version and mutated version, there are 27 test cases 
without any errors; 164 test cases with some un-initialized fields. 91 test cases with 
different kinds of un-initialized local variables. 61 test cases with different kinds of 
nullification. The result of analysis by prototype is about 96% correct. We found that 
the missing target and false-positive results come from the following three causes: too 
strong hypothesis, missing the class invariants; current simple processing for itera-
tion; lack of special mechanism to handle Java standard library.  

4 Related Work and Conclusion 

Control flow-based analyses are extensively used in a compiler’s optimization 
process, which are now enhanced to do some runtime violation checking. The Java 
compiler is an example. Furthermore, many research works are attempting to use the 
data flow-based analysis. PC-lint/FlexeLint2, QA C, QA C++3, LCLint [9] and oth-
ers were developed. The main drawback of those tools is that they generate a long list 
of warnings instead of reporting runtime violations. The advantage of our approach in 
comparison to flow-based approach is that our approach has reasoning capability, and 
can do modular checking. That is, our approach checks each class individually.  

In the last decade, many researches have applied model checking to software veri-
fication, which is originally focus on hardware and protocol design [8] [9]. JavaPath 
Finder [10], Bandera [11], and SLAM [12] are some examples. Two main problems 
which come with applying model checking to software are the complexity of state 
and dynamic nature of most programs. Our approach does not need to construct the 
entire finite state model and therefore does not need huge memory or computation 
resources to conduct the verification process.  

Past research results push researchers to think about using logical proof to reason 
about programs. Those effects started from Hoare triples [3], to Dijkastra’s weakest 
precondition [1], and turns into the complete verification environments, such as 
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Higher Order Logic(HOL) [2], the Prototype Verification System(PVS) [4] and Ex-
tended Static Checking(ESC) system [5]. The main weakness of existing proof-based 
approaches is that they require the programmers to provide annotated program speci-
fication.  

The main contribution of our approach to the traditional logic proof-based ap-
proach is that our approach not only uses the reasoning technology to verify source 
code, but also uses automated theorem prover to discover the logic information based 
on proper hypotheses according to specific runtime violation category. This means 
our approach breaks through the limitation of other proof-based approaches.  Our 
works also show the feasibility of using formal methods to discover the implicit pro-
gram specification.  

Since this is still a research project undergoing, there are some limitations exists. 
In our future research work, we are going to make more accurate hypotheses not only 
in terms of violations, but also on the pattern of the source code, which will discover 
the weaker form of preconditions or invariants and provide more accurate result of 
analysis. Also in order to make our tools more practical, our future research will fo-
cus on the path reduction and analysis optimization. 
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