
A Hypothesis-Based Approach to Detecting
 Runtime Violations

Lizhang Qin, Xiaoping Jia, Hongming Liu

School of Computer Science, Telecommunication and Information Systems
DePaul University

243 Wabash Ave, Chicago, IL, USA

Abstract. We have developed an approach to apply formal methods to repre-
sent program source code as a model and use an automated theorem prover to
detect runtime violations by doing static analysis. Unlike other proof-based
program verification approaches, this approach is based on a hypothesis to de-
velop the implicit specification information, such as invariants, preconditions,
postconditions, then using an automated theorem prover to verify the correct-
ness of each statement in the program. Our research work can catch those run-
time exceptions that are beyond the capability of control flow-based analysis in
compilers.

1 Introduction and Objective

Error detection in programs has always been one of the most active areas of re-
search in computer science. The reason is that people expect software to be error-free,
safe and reliable [6], but even an elaborate program may have runtime violations,
potentially causing severe results. Currently, software testing is still the No.1 method
to find the errors in program, but it is an expensive and unreliable process. Research-
ers hope to develop some automatic tools, which can find those runtime violations
without running the program. In the past, many researchers have been attempting to
realize this goal, and some progress has been made. Modern compilers use control
flow-based analysis to scan the source code and report some runtime violations which
originally could not be caught by traditional compilers. Although the analysis in
those compilers are quite limited due to the lack of reasoning capability and leave the
majority of violations to the runtime environment, they show the feasibility and po-
tential success of applying static analysis to detect runtime violations. Using model
checking technology to do software verification also attracts many researchers. The
approaches that use reasoning technology to do logic proof based analysis have the
potential to perform modular analysis, which can be applied to a variety of software
systems. Many research efforts follow this strategy, including HOL [2], PVS [4], and
ESC [5]. The problem of applying the existing proof-based tools in industry is that
the program specification, which is necessary to the verification process, needs to be
explicitly provided by programmers.

Qin L., Jia X. and Liu H. (2004).
A Hypothesis-Based Approach to Detecting Runtime Violations.
In Proceedings of the 2nd International Workshop on Verification and Validation of Enterprise Information Systems, pages 60-65
DOI: 10.5220/0002676400600065
Copyright c© SciTePress

This paper addresses a new logic proof-based approach, which we call the Hy-
pothesis-Based Approach, to do static analysis of programs as a way of detecting
most runtime violations. By discovering the implicit program specification, the verifi-
cation process as a whole is fully automatic and does not require programmers to do
extra work to accommodate our approach and tools.

We introduce an approach based on the generation of hypotheses to develop the
implicit program specification, such as class invariants, method preconditions, post-
conditions, then use an automated theorem prover to verify the correctness of each
statement in the program.

In this research project, we chose Java [13] as the target language and chose null
pointer dereference and array access out of bound exceptions as the runtime violation
categories to conduct research and instrumentation. Notice that both the approach and
tools are not restricted to these runtime violation categories; both are extensible and
capable of handling other categories. One important step in the application of formal
methods in industry is to introduce some practical solution for the problem to be
solved. In our research, we remove the guarantee that we will report all of the poten-
tial violations, instead we provide a practical way to find majority of them in a rea-
sonable time and using reasonable computation resources.

2 Hypothesis Approach

The basic software verification process comes from the well-known Hoare Triple
[3]. Obtaining the complete program specification for each statement is not feasible
unless programmers describe their design and intention explicitly and thoroughly. But
as mentioned before, the goal of our approach is to detect the majority of runtime
violations within a specific runtime violation category. The program specification we
need are constrained to some particular forms of predicates. We do not attempt to
verify the functionality of a program.

The process of using hypotheses to construct specification contains the following
three steps: according to the specific violation category, generalize the form of predi-
cates which might be the candidates and the rules to verify those candidates; for the
specific program, construct hypothesises using the general form; verify the hypothesis.

Fig. 1 illustrates the components in our approach. Hypothesis Generator uses a
heuristic mechanism to generate the logic condition hypotheses. These predicates are
not randomly chosen, they have to show a reasonable probability to be real program
specification. Hypothesis Verifier filters all the hypotheses generated by Hypothesis
Generator using some specific rules in order to output the valid program specification
that are consistent with the source code. Static Analyzer accepts both the source code
and the program specification from Hypothesis Verifier, uses the automated theorem
prover to check the validity of each statement.

Fig. 1 also shows the basic factors that impact the hypothesis heuristic mechanism.
These hypotheses essentially depend on the violation category that we are interested
in, for example, for null pointer exception, the basic element in hypothesis is in the
form of

 obj != null where obj is an object variable.

61

In addition, the logic condition type also affects the heuristic algorithm. For exam-
ple, we are using different methods to construct class invariants and loop invariants.
The logic condition type also determines the algorithms used to validate the hypothe-
ses. In the rest of this section, we illustrate how to combine those factors to create a
heuristic hypothesis

A hypothesis-based approach is a general approach, we are not restricted to only
the following applications and can extend its use in the future research

2.1 Constructing Assertions

We assert the postconditions for a statement by looking at the next statement. For
 S; {Q} S’
where S, S’ are statements; Q is the expected postconditions after execution of S;
We construct some assertions (preconditions for S’) in order to make S’ valid. We

hypothesize those assertions as {Q}, the postconditions after execution of S.
For null-pointer, if the statement S’ contains any expression in the following form:
 v.m(….) where v is an object variable; m is an method which can applied to

v
We construct {Q} by using {v != null}, otherwise {Q} is simply true.
For array bound checking, if the statement S’ contains any expression in the fol-

lowing form:
 arr[i] where i is an integer variable; arr is an array object;
We construct {Q} by using { i>=0 ∧ i < arr.length }, otherwise {Q} is simply

true.

2.2 Constructing Precondition

We hypothesize some invariants for each violation category. If a hypothesis can be
proven to be true, then it is part of the class invariants, and also part of the precondi-
tions of public methods.

One key to determining the class invariants is the generation of hypotheses [7].
For null pointer, for each object field obj in the class, we construct the hypotheses

obj != null .
For array bounds checking, we are interested in a predicate regarding the size of

the array that can be used as invariant. For an array type of field arr with length
arr.length and initial size, we are trying to formulate a hypothesis like arr.length >=
size.

2.3 Proving Hypotheses

Given the following form of class structure:

 class C { C1, C2, … Cn, M1, M2, …, Mm}

where Ci is the ith constructor; Mk is kth method in class

62

CP: The conditions to be held before running each constructor.
Hj: The jth hypothesis for class invariants

Fig. 1. Basic Components In Hypothesis-Based Approach

If ∀i: 1..n • CP ⇒ wp(Ci, Hj) ∧ ∀k: 1..m • CICj ⇒ wp(Mk, Hj)
Then Hj is an invariant for that class and a precondition for each public method.

After getting the invariants for the class, we can use them as the preconditions for
each public method, and begin the proving process for each statement by calculating
the weakest precondition from the assertion to the top of the method.

3 Experiments

In order to show the project feasibility and evaluate our approach, we have devel-
oped a prototype, which includes the special analysis mechanism for null pointer and
array access out of bound, the complete Java coverage, an automated theorem prover,
the side effect eliminating mechanism and the inter-method and inter-class invocation
analysis.

Hypothesis
Generator

Hypothesis
Verifier

Class Invariants
Hypothesis

Method
Preconditions

Hypothesis

Method
Postconditions

Hypothesis

Loop Invariants
Hypothesis

. . .

Class Invariants

Method
Preconditions

Method
Postconditions

Loop Invariants

. . .

Static Analyzer

Source Codes

Runtime Violation Report

Logic Conditions
Hypothese

Logic Conditions

Class Invariant

Loop Invariant

…...

Logic Condition Type

Null Pointer

Array Access

…...

Violation Category

63

As described before, the intractability of Automated Theorem Prover is an impor-
tant issue to solve. We integrated symbolic algebra calculation as part of our auto-
mated theorem prover, which greatly reduces the burden of proving process. Also we
use a special prove strategy to handle the specific type of predicate we construct, for
example v != null. According to our test, this theorem prover can provide an effec-
tive mechanism to prove predicate in an efficient way.

Although limitations exist in the current prototype, we receive encouraging results
when applying the prototype to analyze around 200 small test Java programs, which
are made manually. For those test programs, our prototype generate a 100% correct-
ness on the analysis, that shows the current prototype does exactly what we expect.

In order to evaluate the real capability of our prototype and approach, we develop
a mutation mechanism to generate test cases automatically. The current mutation
mechanism take the java source code as input, then scan all the “new” statement,
remove each once to output a mutated version. By this way, we simulate the common
fault made by programmers.

We applied this mutation mechanism on 130 java programs and generate 343 mu-
tated versions with different kind of runtime violations. Among all the experimental
cases, including both the original version and mutated version, there are 27 test cases
without any errors; 164 test cases with some un-initialized fields. 91 test cases with
different kinds of un-initialized local variables. 61 test cases with different kinds of
nullification. The result of analysis by prototype is about 96% correct. We found that
the missing target and false-positive results come from the following three causes: too
strong hypothesis, missing the class invariants; current simple processing for itera-
tion; lack of special mechanism to handle Java standard library.

4 Related Work and Conclusion

Control flow-based analyses are extensively used in a compiler’s optimization
process, which are now enhanced to do some runtime violation checking. The Java
compiler is an example. Furthermore, many research works are attempting to use the
data flow-based analysis. PC-lint/FlexeLint2, QA C, QA C++3, LCLint [9] and oth-
ers were developed. The main drawback of those tools is that they generate a long list
of warnings instead of reporting runtime violations. The advantage of our approach in
comparison to flow-based approach is that our approach has reasoning capability, and
can do modular checking. That is, our approach checks each class individually.

In the last decade, many researches have applied model checking to software veri-
fication, which is originally focus on hardware and protocol design [8] [9]. JavaPath
Finder [10], Bandera [11], and SLAM [12] are some examples. Two main problems
which come with applying model checking to software are the complexity of state
and dynamic nature of most programs. Our approach does not need to construct the
entire finite state model and therefore does not need huge memory or computation
resources to conduct the verification process.

Past research results push researchers to think about using logical proof to reason
about programs. Those effects started from Hoare triples [3], to Dijkastra’s weakest
precondition [1], and turns into the complete verification environments, such as

64

Higher Order Logic(HOL) [2], the Prototype Verification System(PVS) [4] and Ex-
tended Static Checking(ESC) system [5]. The main weakness of existing proof-based
approaches is that they require the programmers to provide annotated program speci-
fication.

The main contribution of our approach to the traditional logic proof-based ap-
proach is that our approach not only uses the reasoning technology to verify source
code, but also uses automated theorem prover to discover the logic information based
on proper hypotheses according to specific runtime violation category. This means
our approach breaks through the limitation of other proof-based approaches. Our
works also show the feasibility of using formal methods to discover the implicit pro-
gram specification.

Since this is still a research project undergoing, there are some limitations exists.
In our future research work, we are going to make more accurate hypotheses not only
in terms of violations, but also on the pattern of the source code, which will discover
the weaker form of preconditions or invariants and provide more accurate result of
analysis. Also in order to make our tools more practical, our future research will fo-
cus on the path reduction and analysis optimization.

References

1. Cousot, P. and Cousot R., 1977. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation Fixpoints In Proc. ACM SIGPLAN
Conference on Programming Languages

2. Dijkstra, E., 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Program.
In Communications of ACM. 18(8).

3. Hoare, A., 1969. An Axiomatic Basis for Computer Programming. In Communications of
ACM, 12(10).

4. Kemp, D. and Goodfellow G., 1990. The Official Report, technical report. In ACM
SIGSOFT).

5. Leino, K. and Stata, R., 1997. Checking Object Invariants, technical report, Digital Equip-
ment Corporation Research Center. Palo Alto, CA.

6. Schumann, J., 2001. Automated Theorem Proving in Software Engineering, Springer
7. Skevoulis, S. and Jia, X., 2000. Generic Invariant-Based Static Analysis Tool For Detection

of Runtime Errors in Java Programs.
8. McMillan, K., 1993. Symbolic Model Checking: An Approach to the State Explosion Prob-

lem, Kluwer.
9. Holzmann, G., 1991. Design and Validation of Computer Protocols, Prentice Hall.
10. Visser, W., Havelund, K., Brat, G. and Park, S., 2000. Model cheking Programs. In 15th

Conference on automated Software Engineering(ASE), IEEE Press
11. Pasareanu, C., Dwyer, M. and Visser, W., 2001. Finding Feasible Counter-examples when

Model checking Java Programs. In Proc. of the 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Springer-Verlag

12. Ball, T. and Rajamani, S., 2001. Automatically Validating Temporal Safety Properties of
Interface. In Proc. of SPIN 2001 Workshop on Model Checking of Software.

13. Gosling, J., Joy, B. and Steele, G., 1996. The Javatm Language Specification, Addison-
Wesley

65

