
Collaboration-based verification of
Object-Oriented models in HOL

Kenro Yatake�, Toshiaki Aoki���, and Takuya Katayama�

� Japan Advanst Institute of Science and Technology,
1-1 Asahidai Tatsunokuchi Ishikawa 923-1292, Japan

� PREST JST

Abstract. This paper presents a methodology to verify Object-Oriented models
based on object collaborations using the HOL theorem prover. The advantage of
the collaboration-based verification is to be able to prove invariants that range
over the whole system. In our theory, collaborations are defined to be sequences
of function application and invariants are proved by structural induction on the
system state. We explain the outline of the verification.

1 Introduction

A lot of verification methodologies of Object-Oriented (OO) models based on state-
charts have been proposed [4] [5]. In these methodologies, properties of individual
classes are verified by applying model checking to their state-charts with appropriate
abstraction. But this technique becomes unrealistic when it comes to prove properties
involving multiple classes as it needs to construct a global state space, which often
results in state explosion.

For the verification of properties that are global in systems, we propose a verification
methodology based on a viewpoint of object collaborations. In our approach, collabo-
rations are defined as sequences of function application on a global state space which
is represented by an abstract type and invariants are proved by structural induction on
the system state. We implemented an OO theory for the verification in HOL theorem
prover [2]. HOL is armed with plentiful mathematical libraries and powerful data-type
definition package and is suited to handle various types that appear in the target system.
In this paper, we explain the outline of the verification.

2 Overview of verification

The verification schema using our theory is shown in Fig. 1. Verification starts with
defining a class model. Fig. 2 (above the middle bar) shows the class model of a simple
library system. It defines the static structure of the system like class diagrams of Unified
Modeling Language (UML [1]).

The class model is input to the theory generator and the HOL theory specific to
the model is constructed. The theory is defined based on the object store. It represents
a memory that stores the data of objects which exist in a system and is defined to be

Yatake K., Aoki T. and Katayama T. (2004).
Collaboration-based verification of Object-Oriented models in HOL.
In Proceedings of the 2nd International Workshop on Verification and Validation of Enterprise Information Systems, pages 78-80
DOI: 10.5220/0002678400780080
Copyright c© SciTePress

Theory
generator

HOL theory

Collaborations, Invariants

Class model HOL Q.E.D

Fig. 1. The verification schema

an abstract type. Objects are defined to be references to their data in the store and are
able to send and receive messages via references. Various constants are introduced in
the theory by mapping from the elements in the class model as shown in Fig.2. For
example, corresponding to the class customer, two constants customer_new and
customer_ex are introduced in theory. They are operators to create new customer
object in the store and to test if the object exists in the store, respectively. These opera-
tors are characterized by the first axiom, which says ”the newly created object is alive
in the store”. Likewise, corresponding to each attribute and inheritance relationship,
read and write operators for the attribute and object type cast operators are introduced,
respectively.

book

isbn:num

iid:num
title:string

item

days:num

lend

cid:num
name:string

customer

max:num
days:num
nextcid:num
nextiid:num

library

cd

maximum number of items
a customer can borrow

maximum number of days
a customer can keep an item

next customer ID
and item ID
to be issued

customer ID

item ID

remainning days
the customer can
keep the item

Constants:
 customer_new : customer -> store -> customer # store
 customer_ex : customer -> store -> bool

 book_get_isbn : book -> store -> num
 book_set_isbn : book -> num -> store -> store

 item_cast_cd : item -> store -> cd
 cd_cast_item : cd -> store -> item

Axioms:
 !s. let (cst,s1) = customer_new s in customer_ex cst s1
 !bk n s. book_ex bk s ==>
 (book_get_isbn bk (book_set_isbn bk n s) = n)
 !cd s. cd_ex cd s ==>
 (item_cast_cd (cd_cast_item cd s) s = cd)

Fig. 2. Class model of a library system and the theory

After the construction of the theory, developers define collaborations as sequences
of function application using the primitive operators on the store and built-in functions
provided by HOL. Defining collaborations is just like programming in functional lan-
guage and high level functions provided by HOL facilitate the definition.

79

Invariants are defined as predicates on the store and are proved by structural in-
duction on the system state: i.e. as a base step, prove that the initial state satisfies the
invariant and then, as inductive steps, prove that each collaboration maintains it. The
following is a global invariant we proved about the library system which is expressed
by Object Constraint Language (OCL [3]). This says ”the total number of items lent by
all customers is equal to the number of items unavailable”.

library
customer.lend->size = item->select(lend->size>0)->size

3 Related works

A lot of works including [7] [8] has proposed theories to verify OO programming lan-
guage. Our theory is similar to them but different in that it is for the verification of
analysis models, where we can use not only basic types of programming languages but
high abstract types that appear in the system domain.

4 Conclusions and future work

This paper has presented a methodology of OO model verification based on collabo-
rations in HOL. Collaborations are expressed as sequences of function application and
defined by operators introduced in the theory corresponding to the model elements.
Invariants that are global in the system are proved by induction on the system state.

As a future work, we are considering to develop a collaboration-based design method-
ology based on our OO theory. We are currently interested in applying our theory to
layered designs [6], where systems are constructed incrementally as layers of collabo-
rations. We expect that an effective proof methodology can be established by clarifying
the relationship between layered collaborations and dependency of their invariants.

References

1. OMG. Unified Modeling Language. URL: http://www.omg.org/.
2. The HOL system. URL: http://hol.sourceforge.net/.
3. J. Warmer and A. Kleppe. The object constraint language: precise modeling with UML.

Addison-Wesley.
4. E.M.Clarke and W.Heinle: Modular Translation of Satatecharts to SMV, Technical Report

CMU-CS-00-XXX, Carnegie Mellon University School of Computer Science, 2000.
5. T.Schafer, A.Knapp, and S.Merz: Model Checking UML State Machines and Collaborations,

Electric Notes in Theoretical Computer Science 47, 2001.
6. Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers. Proceedings

of the European Conference on Object-Oriented Programming (ECOOP), 1998.
7. A. Poetzsch-Heffter and P. Muller. Logical foundation for typed object-oriented languages.

Programing Concepts and Methods (PROCOMET), 1998.
8. J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic memory model for

verification of sequential Java programs. Techn. Rep. CSI-R9924, Comput. Sci. Inst., Univ. of
Nijmegen, 1999.

80

