Can Fuzzy Mathematics enrich the Assessment
of Software Maintainability?

Gerardo Canfora, Luigi Cerulo, and Luigi Troiano

RCOST - Research Centre on Software Technology
Department of Engineering - University of Sannio
Palazzo ex-Poste, Viale Traiano 82100 Benevento, Italy

Abstract. Software maintainability depends both on qualitative and
quantitative data. Existing maintainability models aggregate data into
hierarchies of characteristics with given dependencies. However, data
used to score the characteristics can be uncertain or even completely
unknown. Therefore, it would be meaningful to evaluate sensitivity of
the aggregated result, i.e. the maintainability, with respect to the un-
certainty and incompleteness of data. In addition, real cases require an
aggregation model able to evaluate the impact of changing the depen-
dencies among the characteristics in the hierarchy on the maintainability.
In this paper we argue that fuzzy mathematics can help to solve these
problems. In particular, we show how a fuzzy aggregation model can be
adopted to evaluate maintainability according to a hierarchical model.

1 Introduction

Most maintainability assessment models describes maintainability as a function
of directly or indirectly measurable attributes Ay, ..., A,, that is:

M = f(Ay, As, ..., Ay) (1)

Software metrics are used to quantitatively characterize the attributes. Metrics
are then aggregated into a single index expressing the level of maintainability.
This approach is fast, simple, and consistent, basing its robustness on the widely
studied fields of software metrics and empirical software engineering.

Often, the models that link metrics to maintainability are hierarchical, i.e.
measurable attributes are aggregated into intermediate characteristics, and these
are further aggregated into the final maintainability level. For instance, the stan-
dard ISO/IEC 9126 [1] derives maintainability from four characteristics: analyz-
ability, changeability, stability, and testability. However maintainability charac-
teristics as prescribed by ISO/TEC 9126 are still too abstract to develop a metric
directly. More detailed models are proposed by Berns [2], Sneed and Merey [16],
and Oman et al. [14]. Each of these models derives the maintainability index
by aggregating lower level attributes according to a hierarchical view of main-
tainability. In particular, Oman et al. [14] develop a tree structured model con-
taining 92 known maintainability attributes starting from 35 published works

Canfora G., Cerulo L. and Troiano L. (2004).

Can Fuzzy Mathematics enrich the Assessment of Software Maintainability?.

In Proceedings of the 1st International Workshop on Software Audits and Metrics, pages 85-94
DOI: 10.5220/0002679000850094

Copyright © SciTePress

86

on software maintainability. In this model Software Maintainability depends on
management, operational environment, and target software system, as depicted

in Fig.1.

Personnel

Software
Maintainability
‘ \' |
Management Ope'ratlonal Target Software
Environment System
|
Process Existing Target Maturity ~ Source Supporting
Attributes Code Documentation

Fig. 1. Maintainability characteristics [14]

For the sake of simplicity, in our reasoning we focus on the target software
system sub-tree as depicted in Fig.2.

Target Software System

Maturity
Attributes

—

— Age
— size
I Stability

| Maintainance
Intensity

| Defect
Intensity

— Reliability

[Reuse

Subjective
— Product
Appresials

Source
Code
|

Control Information
Structure Structure

System Component System Component

|- Modularity |— Complexity |— Global Data Local Data
Types Types

F— Complexit Use of

ORI | Guetured | Global Data Local Data
[— Consinstency Constructs Structures Structures
|— Nesting Use of | System Data Coupling

- I— Unconditional Coupling .
Branchin nitialization
= fg:"{.’; ® | DataFlow Integrity
- [Nesting Consistency
4 Span of Data

Encapsulation Rt L L.

. I— Control Consistency
— Structures

ouse I Nesting

. L Cohesion
L ControL L5 — 1/0 Complexity

Consinstency

1/0 Integrity

Code Typography,
Naming, and Commenting

System

Overall
Program
Formatting

Overall

Program
Commenting

Module
Separation
Naming

Symbols
and Case

Supporting
Documentation

]

Documentation
Abstraction

Physical
Attributes

Component Subjective
Readability

Appraisals

Subjective
Descriptiveness
Appraisals

Statement Subjective Subjective

Formatting Completeness Modifiability
Appraisals Appraisals
Horizontal
Spacing Subjective
Correctness
Vertical Appraisals
Spacing

Intramodule
Commenting

Fig. 2. Maintainability attributes [14]

Looking at the model, we notice that quantitative metrics come along with
qualitative attributes. For instance, evaluating software maturity, we find quanti-
tative measurements such as age, size, defects intensity, together with qualitative
assessments such as installation complexity appraisals, programming language
complexity appraisals, development effort appraisals. This information is usually
collected by means of questionnaires [15], to which interviewed people answer

87

by selecting a verbal judgment close to their own opinion. This is in accordance
with the fact that software maintainability needs to take into account human
factors and not just internal and structural factors.

For each attribute a software metric is defined and the following aggregation
model is presented:

Wa, Ma,
M=]]we | = (2)

. n
=1

n

where:

— W, is the weight influence of maintainability characteristic C;
— Wy, is the weight influence of maintainability attribute A;
— M, is the metric measure of maintainability attribute A;

Usually quantitative and qualitative data aimed to assess software maintain-
ability are simply aggregated together by means of numeric operators, sometimes
forgetting scale assumptions and manipulation constraints.

There is a predicative model underlying Eq.(2), since product can be as-
sumed as an and-like operation, whilst average as a compensation operation, as
discussed later. Another relevant aspect to take into account regards uncertainty
of information deriving from vagueness and incompleteness of data. Vagueness is
due to impreciseness and ambiguity of human judgments. Moreover, data could
be not fully available. Both vagueness and incompleteness induce a higher un-
certainty and unpredictability of maintainability index.

In the attempt of building a model that simulates the way humans make eval-
uations we should pay attention to the way quantitative data are transformed
into qualitative assessments. Predicative models require to express predicates
on quantitative data on which evaluations of software products are based. Such
predicates are expressions of judgments regarding quantitative data. An exam-
ple is the well known rule of keeping the McCabe cyclomatic complexity [10]
lower than or equal to 7 in order to keep complexity manageable. Predicates
map quantitative data onto qualitative judgments. This mapping has been of-
ten assumed implicitly; even the simple normalization of data can be seen as
qualitative assessment of quantitative data.

In order to consider issues discussed above, key points of our research are

a continuum of aggregation models should be explored to have a broader

view of software maintainability;

— qualitative data are relevant as well as quantitative data in software main-
tainability assessment;

— data could not be fully available;

— attributes and characteristics can have a different weight into determining

the overall maintainability.

Our hypothesis is that fuzzy mathematics, and in particular fuzzy aggrega-
tion models can adequately address all these issues. In particular we claim that

88

a predicative model based on fuzzy rules represents an insightful way to address
the problem of assessing software maintainability. Such a model is able to high-
light logical dependencies among characteristics and attributes that affect the
overall maintainability and its uncertainty. The whole problem can be viewed as
a Multi-Criteria Decision Making (MCDM) problem [9], thus suggesting the use
of an aggregation model. The reminder of this work is organized as follows: in
Section 2 we present a fuzzy aggregation model namely OFNWA; Section 3 con-
tains an example of application; Section 4 closes the paper with some concluding
remarks and future works;

2 Fuzzy aggregation and hierarchical maintainability
models

2.1 A continuum of aggregation models

We use Ordered Fuzzy Number Weighted Averaging (OFNWA) [5] to address
the need for a continuum of aggregation models. OFNWA derives by the concept
of Ordered Weighted Averaging (OWA) introduced by Yager [17]. It is defined
as

i=1
where By, ..., B, is a decreasingly ordered disposition of fuzzy numbers A,,..., A,

so that B; is the i-th largest element. Weights are such that

Zwi =4l (4)
=i

Conversely from usual weighted average, in OWA/OFNWA aggregation model
weight w; is not associated with the i-th element but with i-th largest one. There
are three special cases of OWA operators [17].

wl =w*=[10...0]

F*(ar, ... a,) = max (a;)

n

wl =w, =[00...1]
F.(ay,...,a,) = min (a;) (5)

i=1,..,n
w? = wape = [1/n1/n ... 1/n]
1 n
Fove yeeesln) = — i
(a1 an) n;a

More in general, families of OWA/OFNWA operators can be derived by par-
ticular weight distributions [11,12,19]. OWA/OFNWA operators offer an ideal

89

bridge between and-like operators and or-like operators. An important measure
associated to OWA/OFNWA operators is orness (aka attitude of character, o)
[17], defined as

1 &,
J:n_lg(nfz)wi (6)
It is easy to verify that
o*=1
Oave = 0.5 (7
ox=0

Orness can be interpreted as a measure of aggregation severity: the higher it
is, the more attention to worse attributes is paid. It provides a measure of the
distance between the set of and-like operators and the set or-like operators. When
orness is 0, OWA aggregation corresponds to min operation, that is the biggest
among the and-like operators. Conversely, when orness is 1, OWA aggregation
corresponds to max operation, that is the smallest among the or-like operators.
With orness equal to 0.5 we get the arithmetic average.

2.2 Incompleteness of data

Maintainability assessment often deals with incomplete and uncertain data. This
is something we need to take into account when questionnaires are adopted to
collect data [8], as incompleteness and uncertainty of data affect the information
made available to software engineers for decision making. It has been argued
[4] that although incompleteness and uncertainty contribute to make decision
effects more unpredictable, it is useful to keep their effects separate. Information
is uncertain when we are not sure about the “value” assumed. Information is
incomplete when it is not completely available, so that we can have certain in-
formation but incomplete and vice-versa. For instance, let us consider all cases
where it is not possible to provide an answer to a questionnaire, checking the
“Don’t Know” box (DK), or when a quantitative measure is not available. Tra-
ditional numeric approaches simply ignore any source of uncertainty. However,
taking uncertainty into account is a key to manage risks and to improve the
effectiveness of decision making. Numbers with indeterminateness [5] represent
a way to deal with DK answers and more generally with incomplete data [4].
Numbers with indeterminateness are defined as

F=¢I+(Fy (8)

where Fly is the numeric component, I is the indeterminate element, the coefhi-
cient ¢ is called indeterminateness, and (= 1—£ is called determinateness. While
Fn keeps all available qualitative and quantitative data, I represents “total ig-
norance”: we assume not to be able to describe it by any membership function.
Thus I does not belong to the realm of ordinary numbers. It is a primitive en-
tity that can be just considered symbolically. We can use £ as direct measure
of information incompleteness. When £ = 0 (¢ = 1) information is complete; on
the opposite side £ =1 (¢ = 0) means information is not complete at all.

90

2.3 Relevance of criteria

Aggregation as defined in Eq.(3) does not deal with the relevance of attributes
and characteristics. When a characteristic/attribute is irrelevant, it should be
not considered at all; otherwise it must be took into account. We can describe
this reasoning using the following set of propositions

pi cif imp(C;) is high

then aggregation should consider C;.
pi,2 ¢ if imp(C;) is low

then aggregation can ignore Cj.

where imp(C;) is the relevance associated to characteristic/attribute C;. Ignor-
ing a characteristic/attribute means that aggregation result is independent of
it: the result does not change no matter which value it assumes. These rules
are applied in sequence to each criterion. Thus, we will consider the aggregation
applied to different subsets of criteria, including also the empty one. In that
case we are not able to derive the result. This produces a number with inde-
terminateness, as described in [5], whose ¢ depends on the relevance given to
characteristic/attribute and the completeness of available data.

2.4 Quantitative and qualitative data

In [7] we have proposed a formal characterization of transformations on quanti-
tative data into qualitative assessments by means of judgment functions, and we
discussed how the usual mathematical properties (i.e. derivative and measure)
of functions have a semantic interpretation in the light of qualitative assessment
of data. Briefly, a judgment function is a map that transforms measures into
judgments

Y:E—T 9)

where = is the quantitative measurement domain and 7 is called the judgment
domain. To better qualify the concept of judgment we can refer to it as [7]
dimension of measure associated to the qualitative perception of objects. If we
assume 1" to be a scale, we can look at function 1 as a derived measure. If we
consider also that the aggregation itself is a map between judgments, the result
can be viewed as a derived measure. A judgment function transforms quantities
measuring an object attribute to a degree of criteria satisfaction. Thus judgment
domains and functions can be characterized in terms of some semantic properties.

3 An example of application

As an example of application we used the OFNWA aggregation model to as-
sess maintainability of a small open source software project (about 6 KNCSS!)

! Thousand of Non Comment Source Statements

91

according to model depicted in Fig.1 and Fig.2. The project regards the devel-
opment of a Linux device driver for the Emul0k chipset used in some PC Sound
Cards (http://sourceforge.net/projects/emulOkl/). By inspecting the CVS tree
at SourceForge, we got data about the project history since it started in 2001.
We derived most of the software metrics by inspecting the driver source code
trough the HP-MAS tool [13]. We investigated other sources of data such as bug
reports, change logs, patches, and diffs, in order to derive other metrics such as
age, size, stability, maintenance intensity, defect intensity, reliability, and reuse.
Qualitative attributes, such as product and document appraisals, have been as-
sessed by the use of questionnaires filled in by researchers in our group. All data
we used in the evaluation process with a brief description are available on our
web site (http://cise.rcost.unisannio.it). In Tab.1, we report the average percent
fit at various category level using Eq.(2).

Table 1. Results by applying Eq.(2)

Category |Weighted formula
Maturity 46.03
Source Code 59.99
Documentation 40.62
Maintainability 11.21

Then, we applied the OFNWA aggregation to assess the system maintain-
ability by using a tool we developed [3]. The results are shown in Fig.3, Fig.4
and Fig.5. Graphs show how maintainability and characteristics scores change
depending on the different perspective given by different level of orness (Eq.(6)).
In particular, Fig.3 shows maintainability score for low orness levels. The result is
in accordance with Tab.1. It is made by a continuous sequence of fuzzy numbers
whose uncertainty is bounded by dotted lines. We notice that maintainability
grows with higher levels of orness: the higher is the level of orness, the more rel-
evance is given to better characteristics, the better it is the aggregation result.
Our analysis is restricted to low levels of orness (o € [0,0.5]), due to the fact that
maintainability is viewed as composed by complementary characteristics. Thus,
an and-like aggregation is required, and this is consistent with low levels of or-
ness. Dotted lines give an information regarding uncertainty of maintainability.
This means the maintainability index, whose prototypic value is marked by the
continuous line, varies within the band, with values shading toward the borders
marked by dotted lines. Moreover Fig.3 makes a section view of maintainability
index at some specific orness values, showing the resulting fuzzy numbers.

We can go further in our analysis wondering in which direction to invest in or-
der to improve the software maintainability. Thus, we need to investigate target
software characteristics. Fig.4 shows how the assessment of each characteristic
varies within an interval of orness values. In particular the source code character-
istic has been evaluated for low levels of orness, since it is considered composed

92

by complementary sets of sub-characteristics. Therefore the aggregated value is
computed by means of an and-like aggregation. The result is in accordance with
Eq.2 (see Tab.1). The dotted circle in Fig.4 highlights the area of maximum sim-
ilarity between OFNWA aggregation and the original Oman et al. model [14].
Indeed, the value in Tab.1 has been computed as weighted product, that is part
of and-like aggregations, of source code sub-characteristics. The value improves
for higher levels of orness. Differently, the score assigned to documentation and
maturity is in accordance with Tab.1 when the orness is about o = 0.5. This
concords with the weighted averaging formula used for their evaluation.

However Fig.4 allows us to have a broader view of result than the simple
application of Eq.(2), providing visibility of surrounding values provided by the
continuum of models. In this way we are able to make a deeper analysis. The
source code is good enough and no urgent operation is required on it to improve
maintainability. Moreover, we notice that although documentation and matu-
rity have pretty much the same score in Tab.1l, their profiles shown in Fig.3
are different. Documentation evaluation exhibits a larger variation within the
considered orness range. This means the most of documentation attributes have
been judged as bad or good, with a few judgments in the average. Thus, a tar-
geted improvement of some documentation aspects entails an improvement in
software maintainability. Such considerations would not have been possible with
traditional numerical techniques.

08

Dl T R 13

H.2[
06

11f
05
10f
o4 09f
03 08F
Source Code
0.2 0.7

06

maintainability

0.4
051

04r

°
5
maintainability

041

r- 03[
02 = Documentation

4 0.2f
03
01

0p0 005 010 015 020 0p5 030 035 040 045 050 001
omess. o4F

02f
03[
04L
0.0 0.1 0.2 03 04 05 0.6 0.7

orness

possibilty

maintainabilty

Fig. 3. Maintainability Fig. 4. Maintainability characteristics

Finally, Fig.5 shows how maintainability changes when some answers are not
provided (DK). In particular we considered subjective appraisals about docu-
mentation and maturity not provided. We notice that although there is just a
slight variation in prototypic values (continuous lines), there is a much larger

93

variation in uncertainty. Therefore, the decision graph suggests that we cannot
be confident in the result and we really need to get data not provided. Instead
Fig.6 shows an example in which DK answers do not affect heavily the profile of
maintainability.

maintainability
N

maintainability
o
N
bl

000 005 010 015 020 025 030 035 040 045 050 -0.00
omess

possibilty
\

..... — s 005 000 005 010 015 020 025 030 035 040 045 050
maintainabilty omess

Fig. 5. Maintainability variation (1) Fig. 6. Maintainability variation (2)

4 Conclusions and future works

This paper has shown how fuzzy mathematics can be used to assess the main-
tainability of a software system according to a hierarchical model, namely [14].
The advantage of using fuzzy mathematics is twofold:

— to consider the vagueness and incompleteness of available data, as well as
mixing quantitative and qualitative data;

— to analyze how the maintainability change when considering different kinds
of aggregation among characteristics and attributes.

Of course, more sophisticated models can be considered, for example by con-
sidering multi-expert evaluations of subjective attributes. In short, the aim of
this paper is not to provide a definitive model, but to demonstrate how, using a
fuzzy aggregation model, a rich set of analysis on software maintainability can
be performed, thus empowering managers and decision makers.

94

References

1. (1999). ISO/IEC 9126-1:2001. Part 1: Quality model. ISO.

2. Berns, G. M. (1984). Assessing software maintainability. Communications of the
ACM, 27(1):14-23.

3. Canfora, G., Cerulo, L., Preziosi, R., and Troiano, L. (2003). A tool for decision
support implementing OFNWA approach: a case study. In Proceedings of the In-
ternational conferrence on Software Engineering and Knowledge Engineering, pages
714-720.

4. Canfora, G. and Troiano, L. Dealing with the “don’t know” answer in risk assess-
ment. In Proc. Int. Conf. on Enterprise Information Systems - ICEIS’03.

5. Canfora, G. and Troiano, L. (2001). An extended model for ordered weighted av-
eraging applied to decision making. Technical report, RCOST — University of
Sannio.

6. Canfora, G. and Troiano, L. (2003a). A rule-based model to aggregate criteria with
different relevance, volume LNAI 2715 of Lecture Notes in Computer Science, pages
311-318. Springer, Istanbul.

7. Canfora, G. and Troiano, L. (2003b). Transforming quantities into qualities in
assessment of software systems. Dallas, USA. COMPSAC 2003.

8. Converse, P. (1964). The Nature of Belief Systems in Mass Publics, pages 206—261.
Free Press, New York, d. e. apter edition.

9. Fodor, J. and Roubens, M. Fuzzy Preference Modelling and Multi-Criteria Decision
Support, volume 14 of D. Kluwer, Dordrect.

10. McCabe, T. (1976). A software complexity measure. IEEE Transactions on Soft-
ware Enginnering, SE-2(4):308-320.

11. O’Hagan, M. (1987). Fuzzy decision aids. In 21th Asilomar Conference on Signals,
Systems and Computers, volume 2, pages 624-628. IEEE and Maple Press.

12. O’Hagan, M. (1988). Aggregating template rule antecedents in real-time expert
systems with fuzzy set logic. In 22th Annual IEEE Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA.

13. Oman, P. (1992). HP-MAS : A tool for software maintainability assessment. SETL
Report #92-06-TR, University of Idaho.

14. Oman, P. and Hagemeister, J. (1992). Metrics for assessing a software system’s
maintainability. In Proceedings of the International Conference on Software Main-
tenance 1992, pages 337-344. IEEE Computer Society Press.

15. Oman, P. and Hagemeister, J. (1994). Construction and testing of polynomials
predicting software maintainability. Systems Software, 24:251-266.

16. Sneed, H. M. and Mérey, A. (1985). Automated software quality assurance. IEEE
Transactions on Software Engineering, 11:909-916. Special Issue on COMPSAC
1982 and 1983.

17. Yager, R. (1988). On ordered weighted averaging aggregation operators in
multi-criteria decision making. IEEFE Trans. on Systems, Man, and Cybernetics,
18(1):183-190.

18. Yager, R. (1992). On the inclusion of importances in multi-criteria decision making
in the fuzzy set framework. Int. J. of FExpert Systems: Research and Application,
(5):211-228.

19. Yager, R. (1993). Families of owa operators. Fuzzy Sets and Systems, (59):125-148.

