
Ubiquitous Application Development using a Mobile
Agent-based System

Kazutaka Matsuzaki1, Nobukazu Yoshioka2, and Shinichi Honiden1,2

1 University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2 National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract. This study proposes a methodology that allows the flexible and main-
tainable development of application based on mobile agent to a ubiquitous en-
vironment. Ubiquitous environment is to support people’s movement in an in-
conspicuous and unobtrusive way while they are executing applications. This
requires the various kinds of concerns to be written in application code, which
makes the application code monolithic. A monolithic code reduces its flexibility
and maintainance faculty. Coding techniques to improve the efficiency and test-
ing makes the matter worse. This paper introduce a Worklfow-awareness model
based on agent pairing which makes it possible to tune up a performance of the
application without disorganizing the application logic. AspectJ is used to com-
bine the non-application logics specific to a deployed environment.

1 Introduction

With the recent developments in wireless networks and diffusion of mobile devices, it is
likely that mobile users would use Internet or Intranet services from their mobile termi-
nals. [11] proposes to make hardware devices (printers) to serve as Web Services from
a mobile terminal. [2] supports such service discovery for mobile users. We focus on
a usage style in which mobile user uses services which stand physically near and logi-
cally available via network. For example, we think of situations where mobile user uses
some interactive services through his mobile terminal with walking to other floor. After
he finishes using the services, he might print out the result of the service with available
printer in his reach. Application for such usage style will be needed in many situations.
Its whole execution flow will be much more complicated when realizing application
logic by using multiple services. We aim for aiding such application development.

Generally, there are many network groups even in a single building because of the
social contexts. There may be some companies and some departments in a building.
It is feasible that they belong to different network groups. As a result, mobile user is
restricted using services; he can access the services only when he connects to the same
network groups of the services. To overcome such restrictions, [22, 18] proposes to use
mobile agent technologies. Mobile agents are deployed in a wired network and work as
proxies in using services for mobile user who requests to uses the services.

Matsuzaki K., Yoshioka N. and Honiden S. (2004).
Ubiquitous Application Development using a Mobile Agent-based System.
In Proceedings of the 1st International Workshop on Ubiquitous Computing, pages 204-212
DOI: 10.5220/0002681802040212
Copyright c© SciTePress

Our motivation is realizing an efficient application development which is based
on good maintenance ability from separation of concerns. Target application (mobile
agent) contains application logic, service adjustment (discovery, negotiation, check alive),
performance tuning technique (e.g. interleaving access), testing and other supportive
tasks. This makes application code monolithic and complex, which troubles the appli-
cation programmers. To tackle this problem, we propose Workflow-awareness model.
The model consists of some notions: Pairing, Workflow-awareness (WFA) and practi-
cal use of AspectJ. Pairing means that the application is composed of two agents. The
one is for executing application logic and the other is for subsidiary tasks. WFA means
that execution states of the application logic agent are watched by the pairing agent to
process its subsidiary tasks in assigned timings. AspectJ is used to weave concerns into
an agent for application logics to realize WFA and to alter the behavior of method used
in WFA.

Our methodology goal is to keep the agent for application logic being able to run
anywhere without any modification to itself. Pairing agents are changed to glue appli-
cation logic and deployment environment and intention depending on the situation.

In Sect. 2 we discuss the assumptions of our target environments and the actual
problems for developing in target application. Sect. 3 presents our methodology feature.
Sect. 4 surveys related work and Sect. 5 provides a summary and discusses future issues.

2 Assumptions and problems of the target domain

The focus of this study is on the development of mobile agent application which uses
(multiple) Web Services in ad hoc way and tracks user’s mobility in a building. In
order to gain a narrower scope, we describe some assumptions about the application
deployment environment and the application style. After reviewing the assumptions,
we discuss the target problems to solve.

2.1 Assumptions for deployment environment

– User tracking systems: In order to track the physical mobility of the user (applica-
tion owner), mobile agents are able to look up the user’s position in a building [9,
3].

– Service advertisement/discovery mechanisms: Services are properly advertised with
respect to its service description and their belonging network groups so that appli-
cation (mobile agent) can judge which services are preferable for the user [2, 1].

– Mobile agent run-time: Each host in a network group has an agent hosting environ-
ment with proper access controls mechanisms. This enables mobile agents to use
target services by migrating and messaging among these hosts and services.

With these three assumptions, we imagine the situation illustrated in Fig. 1.

2.2 Assumptions for application style

– Coding agent in a state based programming style [20, 10]: Application is writ-
ten in a state based agent code. The left part of Fig. 3 shows that of Bee-gent

205

network group A

network group B

1. moves into another network group

tracking
system

user

2.sense the user’ s movement

sensor

agent

3.notify

4.migrate

taget
service

agent

directory
service

P2P service
sharing network

1. query service
(message)

1 ‘. query service
message + migration)

2.’ service provider
 list

2. service provider
 list

Fig. 1. Concise description of the target situation is shown. (a) mobile agents can follow the
user’s movement between network groups. (b) mobile agents can know the service provider’s
both logical and physical location from either a directory service or P2P service sharing protocols.

[10]. It is based on the concept of “states” and “state transitions”. Following the
“Transaction-Rule”, a transition occurs from one state to a state where its “Pre-
Condition” matches the Rule.

2.3 Problems

Our target application has many aspects of distributed computing as described above.
Requirements for programmers to realize the target application includes

– application logic: a series of process definitions for the application
– service arrangements: arrange services to keep available, i.e. service matching, ser-

vice preparation, linkage checking between user and services.
– pre-processing: a series of processes needed prior to using services, e.g. authenti-

cations, encryption, file format conversion and so on.
– adaptation: control for adapting to dynamic environmental changes due to user mi-

gration.

Furthermore, performance tuning code and testing code are also necessary for real de-
ployment. Coding these items with predicting run-time situations at the design stage
is quite challenging to application programmers and presents totally a new sphere of
problems.

3 Approach

3.1 Pairing of agents

To solve the above-mentioned problems, we propose a new methodology that introduces
two types of mobile agents: the Master Agent (MA) and the Shadow Agent (SA). The

206

fundamental objective is the separation of concerns which are entangled in one agent’s
code and keeps the required functions satisfied. A monolithic agent that is made with
existing method is to be divided into MA and SA depending on the kind of tasks.

– Master Agent (MA) has an application logic fulfilled by the communication with
both the user and the services. MA’s state transition reflects the application logic
flows.

– Shadow Agent (SA)carries out supportive tasks well-timed for MA execution
states. SA’s tasks are dependent upon the environment or situation where the MA
is deployed, e.g. service matching, service preparation, linkage checking between
user and services, pre-processing needed for using services, adaptation to the changes
of the environment at the run-time, performance tuning, and testing (See Sect.2.3).

As for performance tuning, SA works as a proxy of MA for some tasks (interleaving
execution, preemptive execution etc.). For example, preemptively searching services
(service matching) and Future communication [13] against the output from the service
execution. These behaviors are only enabled when MA and SA work at the remote
places each other. Thus, task separation is done in the form of paired agents, which
have remote communication ability between the components. This separation is a kind
of AOP in agent development [12]. SA is supposed to be created or customized by the
application programmer or code generator adapting the deployment environment and
situations. SA is coded using APIs fetching information of the MA execution states,
and weaving well-timed tasks. We describe more details in the following sections.

3.2 Workflow-awareness model

Workflow

agent application
with existing method

Master Agent

Shadow Agent

devide

workflow update module

control logic

Application logic

update

design phase execution phase

agent applicationagent application

with existing methodwith existing method
devidedevide

design phasedesign phase

WorkfloWorkfloWorkflow

control logiccontrol logic

(monitoring)

Fig. 2.Concise descriptions of WFA. At the design phase, an old-style agent application is divided
into MA and SA. At the execution phase, workflow instance is kept fresh.

207

StateC{

// find matched services providers info
 resourceID = serviceMatch("spec.rdf");

// migrate to the proper place

 migrate(somewhere);
// service invocation

 requestID = invoke(resourceID, "job");

// set posterior state
 if (condition) {

 setPostcond("stateD");
 } else {
 setPostcond("stateE");

 }
}

Workflow

WFState

service_info

migration_info

invocation_info

poststate_info

.....

.....

.....

State-based agent
code structure

Workflow structure

.....

getCurrentState()

enterState()

stayStateFor()

action definition of State C

Translate

translate

A

B C

D E

B C

D D E

F F A

Pre-
condition

Transition
 rule

action

Fig. 3.Translation processes of an agent code. Each state of an agent code is translated into WF-
State, which becomes a workflow object’s component. In this figure, state C is used as example.
Potential workflow elements (method arguments) are extracted into WFState.

We propose to use Workflow-Awareness (WFA) to promote the separation of con-
cerns. The key characteristic is that the SA can trace the MA execution states at run-time
through theworkflowobject. Aworkflowobject is a structure that is composed of ex-
tracted elements of the MA state transitions (WFState), i.e. theworkflow object has
miniature state machine (Fig. 3).workflowelements are as follows:

– state name: This is used as an identifier.
– migration sentence: An MA migration event would be transparent to the SA.
– service matching sentence: An MA service matching message transition to the ser-

vice provider would be intercepted by the SA.
– service invocation sentence: An MA service invocation message transition to the

service provider would be intercepted by the SA.
– state transition command: MA state transition must be cached by the SA, because

theworkflowobject must be kept updated during the MA execution.

Programmer can code the SA with awareness of the timings of important MA ac-
tions through the provided WFA related APIs. Fig. 4 is a list of some examples of WFA
APIs. These APIs are implemented to send/receive ACL messages [8] bi-directly, which
enables SA to make order to the MA actively.

SA’s action is basicallyworkflowevent driven, e.g. ”if the MA enters state food,
then starts service matching preemptively which will be used by the MA in posterior
state.” The important point of this is that the application logic would be preserved even
when testing or performance tunings occur.

208

get the MA field valuesget the MA info

ResourceID prefetch(Spec specfile)

control the service matching command
service matching
control

boolean suspendMA()

control the MA internal statestate control

boolean enterState(String state)

gather the information related to the MAstate information

Object getMAFieldValue(String tag)

output control work as a proxy

RequestID proxyRecieve([signature of invoke()])

example

description return true if the MA enters state identified by “state”

suspend the MA’s execution

find the services matched with specfile beforehand

ask the values of the MA field identified by “tag”

invoke the service as a proxy and control the output data flow

Fig. 4.Some examples of APIs in WFA.

3.3 Practical use of AspectJ

AspectJ is an AOP programming language which is a seamless aspect-oriented exten-
sion to the Java programming language. AspectJ is typically used to generally insert
mostly nonfunctional concerns into functional code.

Since WFA intends to support development, some smart measures to realize WFA
are needed so as not to make it either difficult to develop or taking much time at run-
time.

To meet the requirements, we use AspectJ in some points:

– Automation ofworkflow instance updating: Each MA state transition is handled
by the workflow update module interwoven by aspect. This module send/receives
notification messages to keep theworkflowinformation up-to-date (Fig. 5(a)).
• main concern: Application logic mapped into MA states
• cross cutting concern: Notification message passing

– WFA method delegation: WFA supported performance tunings are done by an SA’s
processing as a proxy of an MA. (See Sect. 3.2) Since we do not want to lose an
MA’s ability to run stand-alone, AspectJ seems to suit well. Fig. 5(b) illustrates
how the delegation occurs. Suppose that main function ofserviceMatching(send
query etc.) inmain part. This part is rewritten by the advice in the aspect as in Fig.
5(b), which would change the behavior of the MA to make use of the SA. This
figure follows the notation of [7]. The “xor” in Fig. 5(b) means that only explicitly
declared method invocation should be changed, otherwise “proceed” the normal
execution (service matching activity by the MA itself).
• main concern: MA’s WFA method execution
• cross cutting concern: Alternate the actor of the method execution

209

Owing to this methodology, performance tuning can be made with the MA’s logics
being entirely kept.

A

B C

D E

B C

D D E

F F A

//intercept the setter of post-condition
pointcut pc_setPostcond(String next) : call(
 void MAStateClass.setPostcond(String))
 && args(next)
 && !within(this);

//send update message to SA
after(String next) : pc_setPostcond(next){
 MAStateClass hookedMA =
(MAStateClass)thisJoinPoint().getThis());
 hookedMA.sendXML(createUpdateMsg());
}

setPostcond : setter of post-condition
MAStateClass : super class for defining MA's
 Interation Protocols

pointcut

(a)

<<refine>>

<<include>>
<<extend>>

on ‘proceed

{xor}

<<include>>

serviceMatch

main_part

<<advice>>

wovenServiceMatch

on ‘proceed

redefine serviceMatch so
as to wait for info from SA

(b)

Fig. 5. (a): MA state structure and aspect which offers workflow update functions. (b): Delegation
of the method execution by being rewritten with AspectJ.

4 Related Work

This section discusses several studies that have influenced various aspects of this method-
ology, which is in conjunction with research areas.

As for pairing of the agents, [21] introduces a secure protocol using a cooperation
agent recording the path history of each other. [15] uses a pair of agents for interleaving
access to services. [15] deploys a delegate-agent for using web services so that effi-
ciency and reliability are increased. In our methodology, the MA and SA each have
their own programmed tasks and sometimes act in remote places, which enables a new
function in addition to interleaving effects.

Several papers have explored meta-level architecture and reflection for mobile agents
[6, 14, 4]. In [6], an agent reasons about the beliefs of another agent, as well as about the
actions that other agents may take. This meta-reasoning is similar to WFA : however, it
does not support the agent division of labor in different places. This support is desirable
under mobile settings so as to efficiently complete tasks.

210

Several papers discuss mobile agents from an AOP point of view. [12] proposed to
introduce the Role Model into an agent system for analysis, design, and implementa-
tion. [17] took another approach for separation of concerns for mobile agents by using
policy control for binding. In this approach, a mobile agent, called a shadow proxy,
roams a fixed network to bind needed resources in place of the applications on mo-
bile terminals. [17] has good mechanisms for resource binding treatment. This is done
under the control of Ponder [5], a policy specification language. In our methodology,
mobile agent tasks not only work as a proxy resolver for resources but also coordinate
between applications and services in wired and wireless networks, i.e. a main part of
the application logic. Our priority is considered in two points:

– Availability of the agent execution state enabling the programmer to adapt it to the
environment characteristics

– Capability to handle complex jobs by coordination of a pair, which cannot be re-
solved only by forking a new process.

Most of the approaches intended to exploit logical mobility for supporting user’s
physical mobility provide middleware [19, 16, 18, 22]. These middleware supports log-
ical mobility in infrastructure levels. [18] realizes the access control of resources from
the context information of the middleware components (mobile proxies). Relevant ac-
cess control rules, client location, user preferences, privacy requirements, terminal char-
acteristics, and current state of hosting environments can be considered, which helps
mobile clients obtain flexible access to the resources. [22] is characterized incapabili-
ties, a unit that provides a specific functionality to the user, the middleware or to other
applications and adheres to a specific interface. These capabilities provide the middle-
ware (SATIN) with modularization and make it easy to deploy and update applications.

We would like to investigate a middleware design to fit our methodology reusing
some functions of these existing approaches.

5 Conclusions and Future Work

In the present study, a mobile agent based development methodology for ubiquitous ap-
plication has been proposed. The approach offers a Workflow-awareness model based
on paired agent cooperation for aiding programmers in handling run-time events ef-
ficiently while separation of concerns is kept. The methodology also applies AspectJ
practically in its implementation. A workflow object contains the latest information on
the agent execution state and the pair agent can decide on its action accordingly. This
cooperation enables the effective behavior of agents at the service exploitation time.

The direction of our future research is to provide some patterns or rules for pro-
grammers as for SA’s functions. We are also presently striving to design middleware
that suits well with WFA methodology.

References

1. Jxta v2.0 protocols specification, 2003.

211

2. Web services dynamic discovery, 2004.
3. Paramvir Bahl and Venkata N. Padmanabhan. RADAR: An in-building RF-based user loca-

tion and tracking system. InINFOCOM, pp. 775–784, 2000.
4. Walter Cazzola, Shigeru Chiba, and Thomas Ledoux. Reflection and Meta-Level Archi-

tectures : State of the art and future trends. InObject-Oriented Technology (ECOOP 2000
Workshop Reader), Vol. 1964 ofLecture Notes in Computer Science, pp. 1–15. Springer-
Verlag, 2000.

5. Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The ponder policy
specification language.Lecture Notes in Computer Science, Vol. 1995, pp. 18–38, 2001.

6. Jürgen Dix, V. S. Subrahmanian, and George Pick. Meta-Agent Programs. Technical Report
21–98, 1998.

7. Stefan Hanenberg Dominik Stein and Rainer Unland. An uml-based aspect-oriented design
notation for aspectj. InProceedings of the 1st international conference on Aspect-oriented
software development (AOSD ’02), pp. 106–112, 2002.

8. FIPA, 2001. FIPA ACL Message Structure Specification, Foundation for Intelligent Physical
Agents.

9. D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project aura: Toward distraction-
free pervasive computing.IEEE Pervasive computing, Vol. 1, No. 2, pp. 22–31, 2002.

10. Bee gent Website, 1999. http://www2.toshiba.co.jp/beegent/.
11. The Printer Working Group, 2003. Print Service Interface Version 1.0 Working Draft.
12. Elizabeth A. Kendall. Role modeling for agent system analysis, design, and implementation.

IEEE Concurrency, Vol. 8, No. 2, pp. 34–41, 1999.
13. Doug Lea.Concurrent Programming in Java: Design Principles and Patterns, Second edi-

tion. Addison-Wesley, 1999.
14. Thomas Ledoux and Noury M. Bouraqadi-Saadani. Adaptability in mobile agent systems

using reflection. InRM’2000, Workshop on Reflective Middleware, Middleware’2000, April
2000.

15. Zakaria Maamar, Quan Z. Sheng, and Boualem Benatallah. Interleaving web services com-
position and execution using software agents and delegation. InAAMAS 2003 Workshop on
Web Serices and Agent-Based Engineering.

16. C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. Xmiddle: A data-sharing middle-
ware for mobile computing.Wireless Personal Communications, Vol. 21, No. 1, pp. 77–103,
2002.

17. Rebecca Montanari Paolo Bellavista, Antonio Corradi and Cesare Stefanelli. Dynamic bind-
ing in mobile applications : A middleware approach.Internet Computing, Vol. 7, No. 2,
2003.

18. Rebecca Montanari Paolo Bellavista and Daniela Tibaldi. Cosmos: A context-centric access
control middleware for mobile environments. InMobile Agents for Telecommunication Ap-
plications, 5th International Workshop, MATA 2003, Vol. 2881 ofLecture Notes in Computer
Science, pp. 77–88, 2003.

19. Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. LIME: Linda meets mobility.
In International Conference on Software Engineering, pp. 368–377, 1999.

20. Martin C. Rinard and Monica S. Lam. The design, implementation, and evaluation of Jade.
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 3, pp. 483–545,
1 May 1998.

21. Volker Roth. Secure recording of itineraries through co-operating agents. InECOOP Work-
shops, pp. 297–298, 1998.

22. Stefanos Zachariadis and Cecilia Mascolo. Adaptable mobile applications through satin: Ex-
ploiting logical mobility in mobile computing middleware.UK-UbiNet Workshop, Septem-
ber 2003.

212

