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Abstract. In this paper we are presenting a work concerning the classification 
and recognition of off-line signatures. Signatures form a special class of hand-
writing in which legible letters or words may be impossible to exhibit but we 
can extract some features with the help of some parameters. Our proposed fu-
sion methodology for improving the classification and recognition performance 
of classifiers is based on Dempster-Shafer evidence theory in which our contri-
bution regarding to solve the problems like selection of focal elements and 
modeling the belief functions is also given. Distance classifiers studied,  clas-
sify off-line signature images with the help of signature images projection 
along different axes and by employing some geometrical and fractal parameters 
which are explained in this article. Dempster-Shafer theory when applied for 
the fusion of these classifiers has improved the overall recognition rate.  

1   Introduction 

People have different handwriting styles characterized by more or less distinguishable 
features. Signatures form a special class of handwriting in which legible letters or 
words may be impossible to exhibit. Nevertheless they provide secure means for 
authentication, attestation and authorization in legal, banking or other high security 
environments and they are recognized as legal evidence. The achievement of an 
automatic signature recognition and verification system has a lot of problems to 
solve, which have been reported by many researchers from the very early stages of 
work in this field. A signature system can be classified as either on-line or off-line 
based on the hardware front-end. On-line system [1] employs an electronic pen and 
pad which provides dynamic. In off-line system, signatures written on paper are con-
verted to electronic form with the help of scanner or camera. Here we are concerned 
with off-line system. The main difficulty can be expressed in form of interpersonal 
and intrapersonal variations. A lot of useful features have been used to differentiate 
the signatures of one person from others. Still a work on efficient feature extraction 

Arif M., Brouard T. and Vincent N. (2004).
A Fusion Methodology for Recognition of Off-Line Signatures.
In Proceedings of the 4th International Workshop on Pattern Recognition in Information Systems, pages 35-44
DOI: 10.5220/0002682200350044
Copyright c© SciTePress



system is needed in this area. The features proposed in off-line system can be charac-
terized as global, geometric, structural or statistical. Use of transform-based represen-
tations and critical points from off-line drawing of signatures has been reported in [2] 
and [3] respectively. In [4] combination of global geometric and grid features has 
been presented. A connectionist scheme of combining classifiers based on moment 
measures and envelope characteristics has been reported in [5]. Four types of pattern 
representations via geometric features, moment based representations, envelope char-
acteristics and tree-structured wavelet features have been employed in [6]. In [7] a 
combination of static image pixel features and pseudo-dynamic structural features 
have been employed. 

In this paper, we are focusing on two points. On the one hand we present easy fea-
tures and some more relevant in a biometry system. On the other hand we have cho-
sen to split the use of each type of features to highlight the information they are able 
to bring in the problem solving and then achieve the fusion of different information. 
This is quite a different methodology from feature selection approaches. We have 
taken into account very different features. Classification based on these factors and 
realized with the help of distance classifiers was first achieved. Then recognition by 
combining these classifiers is proposed. Other methodologies rest on the basis of 
neural networks or HMM. Here we are proposing Dempster-Shafer evidence theory 
as a combining tool. This theory has been reported with remarkable performance 
when applied in different fields in order to achieve fusion. Without being exhaustive, 
we can mention a certain number of application areas exploiting the advantages of 
this theory, such as multi-sensors fusion, classifiers combination, pattern recognition, 
environment monitoring, image processing [8], [9], [10], [11], [12], [13], [14] etc. It 
proves that use of Dempster-Shafer theory is very productive, but its efficiency 
depends considerably on the function which is employed as function of allocation of 
mass of belief. Indeed, this function represents a model for uncertainty and 
imprecision of information. In the majority of the cases, modeling of the belief 
function used, is empiricaly fixed by the expert. First, we will precise the features we 
have chosen and then their performances will be evaluated. After some recalls on 
Dempster-Shafer evidence theory the merging process we propose will be explained 
and the results analyzed.   

2   Preprocessing and feature extraction  

Besides the variability that occurs due to the author of the signature himself, all 
image-processing applications suffer from noise due to the acquisition process, such 
as touching line segments, isolated pixels and smeared images. Nevertheless we as-
sume that the signatures have already been extracted from the background. For signa-
ture discrimination various aspects can be considered and different features will be 
extracted from signature images. These different features help to establish several 
classifiers. We have chosen on the one hand, global simple features as the histograms 
that omit some spatial information, and on the other hand some geometrical parame-
ters including some fractal parameters either global or local.  
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2.1   Histograms  

Obviously, a person cannot draw his own signatures twice, 100% identical. In fact, 
there are always some local alterations in different signatures of a person while the 
signatures global shape remains the same. We can do an approximate analysis for 
signatures identification by employing some histograms of the number of projection 
pixels on various axes. These axes may be linked to the image as horizontal and ver-
tical x-axes and y-axes respectively or may be linked to the signature itself following 
the direction of the signatures.  
    Signatures projection on Cartesian axes gives horizontal and vertical histograms, 
simpler to draw. These histograms allow studying the variations in number of pixels 
along the horizontal or vertical axe. Projection on horizontal axe of a signature image 
enables us to see whether the signature points are distributed rather on the left or the 
right-hand side of the signature. Projection on vertical axe gives an indication on the 
distribution in height of the signature points. Once the histogram is normalized as 
frequencies, it makes the study invariant toward either image resolution, or the size of 
the original signature. The precision of the study depends on the number of classes 
defined in the histogram. It will be the same for each signature. It is now easy to com-
pare them.  

The histogram along the axis of siganture’s own slope follows the same principle 
in general. In this case, first the direction of the signature based on its slope (principal 
axis of the signature) has to be extracted. This axe can be deduced from the eigen 
values and vectors of the signature image. With an ellipse similar to the inertial 
ellipse, covering 90 % of the signature, it would be possible to eliminate certain 
unnecessary features (for example an underline whose length is not stable on several 
signatures). The histogram obtained on this new axe is often close to the traditional 
horizontal and vertical histograms but look more stable. The distance chosen between 
two histograms is a traditional distance, a quadratic distance. It reflects the variations 
existing between two signatures.  

   

0
1
2
3
4
5
6
7
8
9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49  
(a) Horizontal histogram 

0

1

2

3

4

5

6

7

 
(b) Vertical histogram 

0

1

2

3

4

5

6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49  
(c) Histogram along principal axis 

 

Figure 1 : Normalised histograms of a same image along different axes. 
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2.2  Geometric and fractal parameters 

A signature being a completely personal graphic has some particular discriminating 
characteristics. In this part we will present various parameters being able to extract 
these caracteristics from the signatures images. These are different from those studied 
with the help of histograms because they represent the complexity and shape of 
signatures. We will be interested first of all in signature image contours. There are 
several types of image contours and we will see how they can lead to a signature 
characteristic. Then we will study the fractal parameters which give an index of 
signature complexity. Then we will make use of the local fractal dimension to detect 
the irregular zones in the signature and thus to compare them. Then we will see a 
mass dimension which gives an index on the shape of image and which appears to be 
complementary to fractal dimension. The last parameter that we are studying is the 
direction of the signature which appears rather stable for a person. Finally, we will 
see how to use these parameters in the framework of signature recognition.  

2.2.1  Extraction of image contours 

Contours or envelopes of signature have already been used for signature recognition. 
We will be interested particularly in their proportion compared to whole signature. 
Thus we will be able to compare the "perimeter" of the signature and its "surface". 
Indeed two objects having same area may not possess the same perimeter (or vice 
versa) and it is interesting to see in which measurements they are proportional. In 
literature there exists several types of contours. For each type of contours used, we 
will calculate the ratio of “Number of pixels in contour / total number of pixels in the 
image.” 

First we are studying classical contours extracted from a binary image using 4 
connexity notion. Second type of contours studied, is the exterior contour. In fact it 
corresponds to a part of classical contours. We select only the first black pixels on 
each row and column from the image edge.  

2.2.2  Fractal dimension  

A fractal dimension is a real number that is used to measure the degree of irregularity 
and fragmentation of a set [15]. From our point of view, it gives an index qualifying 
the shape of a signature. Several methods of computing fractal dimension exist 
approximating the exact formula.   

The fractal notion makes it possible to determine the length of a complex curve X. 
It is realised by the use of fractal dimension. To compute it, we consider the set of X 
minimum mappings by η radius balls. These mappings are figured by successive 
dilations of X : Xη, and let A(Xη) be its area. The fractal behavior of the X set is ex-
pressed by the linearity of the relation that links lnA(Xη) and ln η. In [16] a graph 
called an evolution graph (as shown in the figure) enables to study the relation linking 
ln η and lnA(Xη)/ ln η. The fractal dimension is then computed from the formula: 
D(X) = 1-p, in which p is the slope of the straight line approximating the plotting.   
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2.2.4  Mass dimension 

This parameter makes it possible to measure the distribution of the pixels defining the 
signature image. Its calculation method is relatively simple. It is necessary first of all 
to select a certain number of points randomly in the signature image, let say 10%. 
This parameter is then calculated by studying each selected point. For that, the nature 
of neighboring pixels of the point selected is observed. Thus the number of black 
pixels (pertaining to the feature of the signature) are counted in the neighboring 
matrix of 3, 5 and 7 etc. A linear relation between ln(neighboring pixels) vs 
ln(number of black pixels) is studied. The first coefficient of this relation indicates 
the mass dimension. Its average value for the 10% points selected in the signature 
image gives an overall mass dimension value for the signature image under studying 
and which can be used as a comparison tool with other signature images.  

2.2.5  Signature’s slope  

Generally, people draw their signatures with same angle. One can visually notice it in 
the majority of the signatures. We thus thought of using this angle as parameter 
because it appears to be stable. It is calculated from the principal inertia axis.  

3   Classifiers and evaluation of their performanace 

From these sets of parameters we have studied 4 classifiers based on horizontal histo-
gram, vertical histogram, histogram based on signature’s principal axe, and one clas-
sifier representing 7 geometrical and fractal parameters as discussed in previous sec-
tion.   

For the evaluation of classifiers performance, we are employing “leave-one-out 
method”. Say that N samples are available for estimating the error rate for a classifi-
cation system. The leave-one-out method can be applied here by using N-1 samples to 
train the classifier and the remaining sample to test the classifier. The result is then 
recorded and this procedure is repeated N times, each time a different test sample is 
excluded. The error rate is then estimated using the average of these N trials.  

4   Dempster-Shafer evidence theory 

In order to combine information coming from different sources, Shafer [17] has cre-
ated the evidence theory on the bases formulated by Dempster. The theory can com-
bine evidence in a consistent manner to come at a more complete assessment of what 
the entire body of evidence implies. The most important factor is the modeling of 
belief functions. Once the belief functions are obtained, fusion is carried out by 
Dempster information combination rule. In this theory, let Ω = { H1, H2, H3, …., HM } 
be the set of possible propositions, called the frame of discernment. Let 2Ω denotes 
the set of the 2M propositions H of Ω :  2Ω = {H / H ⊆ Ω} = {φ, {H1}, …, {HM}, 
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{H1,H2}, …., Ω}. Information bringing an opinion on the state of a system is charac-
terized by a function or a degree of belief m. This function m is defined by m: 2Ω  → 
[0,1], and has the properties that m(φ ) = 0   and  = 1. The quantity 

m(H) is called basic probability number of H. It measures the belief that is committed 
exactly to H. The subsets of 2

∑ Ω⊆H )H(m

Ω  whose mass is non null, are called focal elements. A 
situation of total ignorance is given by m(Ω) = 1 and of total certainty (on a singleton 
assumption) by m(Hn) = 1 where Hn represents a singleton proposition. To obtain the 
measure of the total belief committed to H, one must add to m(H) the quantity m(H’) 
for all subsets H’ of H such that Bel(φ) = 0, and ∀ H ⊆Ω   Bel(H) = ∑ ⊂HH' m(H’). 
There is one-to-one correspondence between the belief function and the basic prob-
ability assignment. The main difficulty consists in modeling knowledge to initialize 
the basic belief assignment m(.). Many modeling methods have been proposed, which 
depend usually on the considered application.  

Now, if we have several sources of information Sj (j = 1, …., J) providing their 
functions mj, then a single belief function can be obtained by combining them (m = 
⊕J

j =1 mj) according to Dempster’s orthogonal operator : 
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The normalization coefficient K represents the conflict between two sources. It has 

value between 0 and 1. If K is equal to 0, the sources are in perfect agreement but if K 
is equal to 1, they are in total conflict. In this last case, fusion cannot be achieved by 
Dempster-Shafer theory. A conflict mass K is generated when the information sources 
are neither independent nor perfectly reliable and modeling of belief functions is too 
vague. In order to cope with this problem, other combination operators have been 
proposed in the literature [18]. 

Modeling of belief functions lacks of generality. However, two types of ap-
proaches can be mentioned : (i) based on distance calculation, (ii) based on similarity 
measure. According to the nature of our classifiers we are more interested in the first 
approach but our work differs from other propositions [19]. We now present our 
contribution to modeling of belief functions in an automatic way [20]. Indeed, we are 
dealing with pattern recognition. An incoming pattern X has to be classified in class 
Ci by combining two or several distance classifiers. Distance classifiers give the re-
sults by rank level outputs in form of the classes Ci (i = 1 to M) of  prototypes Xi ( i = 
1 to N) according to their distance  d(X, Xi). We define a proposition H in the frame 
of discernment  Ω as X∈Ci or simply Ci so: Ω = {C1, ..., CM} Now focal elements and 
their belief functions are defined. 

Focal elements are the sets of n classes that are concerned by the first neighbors (n 
varying from 1 to k). Before combining results each classifier is considered on its 
own. For the purpose of modeling belief function associated with each incoming 
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element, we are introducing a fuzzy membership function to Xi prototype classes. The 
prototypes are those in the neighborhood of incoming X, it is noted by FXi(X). A 
fuzzy membership function for a class noted by FC(X) is calculated by taking an aver-
age value of its prototypes membership values. The function has values between 0 
and 1, and has to give a maximum value towards 1 when X belongs to  the class. The 
main variables we have taken into account for a given classifier are (1) Choice of k 
nearest neighbors of incoming pattern X and the distances associated with. (2) Rank 
RX(Xi) of the output classes of prototypes, ordered according to the distance d(X, Xi). 
(3) NX(C) which is a class repetition number among the k nearest neighbors consid-
ered. (4) VXi(X), the ratio between the distances d(X, Xi) and d(X, Xz) where Xz 
represents the preceding prototype in the rank level output of the classifier. Here is 
our prototype based formalism:  
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    Each term has to be maximum when X and prototypes considered belong to the 
same class. The weights are chosen in order to balance the different influences. This 
function is then employed for modeling the belief function.  

 
mi ({A1}) = FXσ(1)(X),   ...,  mi ({A1, A2, …., Ag}) = FXσ(g) (X) (5) 

    
    where Xσ(j) (j = 1, .., g) represents the prototypes appearing in k nearest neighbor-
ing prototypes. m(Ω) complements the evidence to 1. the results using this modeling 
approach and its performance are shown in the following section.  

5. Experimental results 

Our database consists of 540 scanned images of handwritten off-line signatures ob-
tained from 36 persons who were asked to sign for 15 times each. Four trained dis-
tance classifiers (e1, e2, e3, e4) with Euclidean distance classified these signature im-
ages after their feature extraction. First three classifiers are those constructed from 
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horizontal, vertical and signature’s own direction based histograms and the 4th classi-
fier is based on a set of primitives as fractal dimension, mass dimension, signature’s 
slope and signature’s image contour fraction etc. Performance of these classifiers was 
calculated with leave-one-out method. The recognition rates obtained for four classi-
fiers employed, are shown in the table 1 with 5-NN and 10-NN. Here, the decision 
that incoming prototype X ∈ Ci was taken by the classifier with k-nearest neighbor 
rule taking into account the classes of first 5 or 10 nearest neighboring prototypes of 
X.  

The recognition rates of classifiers were improved by combining them with the 
help of Dempster-Shafer evidence theory based on our fuzzy modeling approach of 
belief functions. The results obtained are shown in the Table 1. Fusion by employing 
DS theory with our belief function modeling was achieved by taking first 5 or 10 rank 
level outputs of classifiers. The decision rule was the proposition with the maximum 
belief value. We can note from the table 1 that Dempster-Shafer evidence theory can 
deal with several classifiers even if some are of poor quality. This is not the case with 
a general vote majority method whose result is also shown in the table 1. 
 

 
Classifier / method 

 
e1

 
e2

 
e3

 
e4

A vote 
majority 
method 

Evidence 
theory 

5-NN 68,69 53,98 71,81 69,33 Recognition 
rate (%) 

10-NN 61,97 50,08 67,79 65,75 

 
82,30 

 
94,10 

 
Table 1 : Performance of different classifiers and our fusion methodilogy. 

6.  Conclusions and perspectives 

A work concerning the recognition of off line signature has been presented. Some 
easy features based on histograms and some particular biometric features based on 
geometric and fractal behaviour were used for classification of different signatures. 
The classification information of these rather poor classifiers were then combined by 
use of Dempster-Shafer evidence theory with our belief function modeling approach. 
The results obtained with real signatures images has shown very tremendous 
improvement of the individual classifier’s performance. 
    In our next works, we intend to compare our results with those obtained by feature 
selection among 157 features that are involved in the four classifiers employed. We 
also will quantify the improvement brought by each classifier and introduce new 
features.      
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