
Ancient Document Recognition Using Fuzzy Methods

Cláudia S. Ribeiro, João M. Gil, João R. Caldas Pinto, João M. Sousa

Technical University of Lisbon, Instituto Superior Técnico, GCAR
Av. Rovisco Pais, 1049-001 Lisboa Portugal

Abstract. This paper proposes an optical character recognition system based on
fuzzy logic for 17th century printed documents. The process consists of two
stages: training with collected character image examples and new character
image classification. Training builds fuzzy membership functions from aligned
oriented features extracted using Gabor filters. These are used in classification
to select a most likely character group for new data. A post-processing stage
with a proposed modified Levenshtein word distance metric further improves
results. A success rate of 88% is achieved on a significant test set.

1 Introduction

Optical character recognition (OCR) is a practical application of state-of-the-art
image processing and pattern recognition developments. Current communication
facilities could allow broad distribution of vast libraries of books, newspapers,
magazines and all kinds of printed media, if quality, cost-effective OCR procedures
are available for mass digitizing. While modern printed text can be recognized very
accurately with commercially available software, performing OCR on material such
as gothic fonts, ancient typesets and handwriting is noticeably less successful.

This paper proposes a character recognition system specifically tailored to ancient
documents (17th century) and corresponding typesets based on a handwriting OCR
system using fuzzy logic [1]. The use of fuzzy classification [2] improves results by
providing larger tolerance for unstable typesetting and printing technologies. The
original modifications introduced to [1] are reported and explained along the article.
A modified probabilistic Levenshtein word distance metric is also proposed, coupled
with a post-processing system that is able to correct both character recognition and
word segmentation.

Unlike the original holistic system, recognition is performed from an analytic
perspective, i.e., by taking each character separately. The recognition procedure
works in two steps. The first step, training, considers sets of character images, known
as character groups, and combines their dominant graphical features. These are then
used to build fuzzy membership functions that, in a sense, describe the visual
attributes of every character group. For the second step, classification, a new character
image is compared to the training results. The closest match, dictated by a fuzzy
decision maker, is returned as the most likely classification. The final post-processing

S. Ribeiro C., M. Gil J., R. Caldas Pinto J. and M. Sousa J. (2004).
Ancient Document Recognition Using Fuzzy Methods.
In Proceedings of the 4th International Workshop on Pattern Recognition in Information Systems, pages 98-107
DOI: 10.5220/0002685600980107
Copyright c© SciTePress

stage, based on spell checking, word distance metrics and probabilistic error
information, is able to increase recognition success further, by selecting character
corrections and improving word segmentation.

2 System Overview

This section intends to give an introduction to the general functioning of the
developed application. Fig. 1 displays a diagram representing schematically the
organization of the developed system and the streamlined design connecting its
components. The main application relies on a commercial OCR package, ABBYY
FineReader Engine [12], in order to obtain individual character images automatically.
This package also provides methods to segment entire words, as well as its own OCR
output. This information is used to build a manually classified character database,
which is applied in the training stage to build models for every known character. The
main module is then able to assign a most likely classification to other character
images, thus performing the intended OCR on characters with high error probability.
Word segmentation information, on the other hand, is considered and improved upon
in the final post-processing step, which also takes advantage of spell checking and
probabilistic error information.

FineReader
recognition Fuzzy

OCR Training Post-
processing

filters

Fig. 1. System overview diagram

The underlying system for the recognition engine is based on a handwriting OCR
system using fuzzy logic [1]. The following sections describe the original changes
applied to this system in order to build the intended analytic recognizer.

3 Training

In this section, the fuzzy recognition training process is described, highlighting
particularly the several modifications performed on the original recognizer.

The dominant features of a character consist of what is more common not to
change between typing styles, such as the long vertical stroke in the b’s and t’s, for
example. In this paper their extraction is performed through Gabor filter banks, which
allow oriented feature extraction. The Gabor filter is a typical wavelet that offers
localized operations [3]. Part of its parameters specify the Gabor wavelet direction φ

Recognized
ASCII text

 Document
metadata

99

[3], as shown in Fig. 2, and the image region from which we intend to extract
character features. Other parameters are character dependent, which means that the
estimation has to take into account the image and the thickness of the writing [3]. For
this reason, usually, their values are selected on a trial-and-error basis. For this paper,
12 wavelet directions were considered, from 0º to 180º.

Fig. 2.

The
system
variati
was d
effecti
flaws,
segme

As
extrac
adding
trained
labele
standa

Un
ratios

where
image
I. The

Bef
functi
extrac
image

Me
and lo
the up
maxim
respec
metho
extrac

100

Original image Gabor filter (φ = 0º) After applying the filter

 Example of oriented feature extraction using Gabor filters

 filtering process is virtually identical to that in [1]. However, the original
 required a time-consuming alignment algorithm, needed to compensate for
ons in character spacing and shape and normalize word bounds. This procedure
isabled because it can produce heavy distortion when feature match is not
ve. A single character has a smaller number of dominant features; printing
 common in this context, complicate feature matching even further. Character
ntation is also tight and accurate from the beginning.
each training sample of the same character contains essentially the same

ted features structure, the major structural components can be established by
 the standardized images together, which forms the composite image for each
 character. Character images are classified manually; ancient characters are

d as their present-day equivalent, therefore solving the problem of generating
rd ASCII text from these occurrences.
like the original system as presented in [1], information regarding image aspect
is also stored. The average aspect ratio arj for each group j is defined as:

j

N

k
kj

j N

Iar
ar

j

∑
== 1

,)(
 . (1)

 Ij,k is the k-th sample image for character group j, Nj is the total number of
s for group j and ar(I) is the quotient between the width and the height of image
 arj values are used as further assistance in the classification of new characters.
ore the classification process can take place, a set of fuzzy membership
ons is generated for each character group and each orientation based on the
ted features of the training images. These intend to provide a description of the
 features for use within the recognition algorithm.
mbership function generation begins by thresholding the feature image. Upper
wer thresholds Hu and Hl respectively are used to binarize the image [4], finding
per and lower boundaries for each feature. These thresholds depend on the
um intensity of the image and on constants cu and cl, set at 0.4 and 0.25,
tively. These values are determined empirically [1], but a standard binarization
d [5] may also be effective. Two bounding rectangles are found around each
ted feature [6], corresponding to each intensity threshold, as shown in Fig. 3(a).

Fig. 3. (a) Bounding rectangles around extracted features; (b) Generated membership functions

Each rectangle pair is used to build a partial membership function. Its value µ(x, y)
is 1 in the inner rectangle area and zero outside the outer rectangle. The vertices of a
rectangle pair are linked based on Euclidean distance minimization. The intermediate
function values are interpolated [7], forming a twisted trapezoidal shape. To do so, the
domain is divided into 13 regions; the equations used to compute the function values
can be found in [1]. An example is graphically represented in Fig. 3(b).

The global membership function for a given orientation i, denoted as ai(x, y), is
defined as the maximum of the partial membership functions at each point, to deal
with cases in which features overlap, thus taking into account only the most relevant
feature. These maximum values are found continuously during the membership
function generation process, in order to minimize resource usage.

4 Classification

The next step in the OCR process is the classification of new characters. The input for
this stage is a character image V and the training structures. First, the image is run
through Gabor filter banks, a process already applied in the training phase. The
intensity of point (x, y) of the resulting image is denoted as V’i(x, y) for orientation i.

The objective is to compare the image features with the membership function
values. Weights wij(x, y) were assigned to each image point (x, y), for each orientation
i and each character group j, to measure its influence, related mostly to membership
function values. Similar points should be assigned a positive weight, and those that
prove dissimilarity should penalize the rating. Weights are calculated according to:

wij(x, y) = V’i(x, y), if aij(x, y) = 0 . (2)

wij(x, y) = w’ij(x, y), if aij(x, y) ≠ 0 . (3)

Equation (2) assures that points where V’i is not zero, but the membership function
is, will be penalized. This happens when a feature does not match any of orientation i
for word group j. In this case, the value lowers the computed similarity rating. In [1],
a somewhat different formal notation is used, in part to account for the distinction
between the various partial membership functions. In this paper, the partial functions,

101

each corresponding to one feature, are iteratively combined, simplifying notation and
improving computational resource usage.

The rate of significance of point (x, y) in (3) is denoted by w’ij(x, y). Being Nc the
total number of character groups, w’ij(x, y) is given by:

w’ij(x, y) = 0, if N+ = 0 . (4)

∑
=+

+

×−
+

=′
cN

j
ij

c

c
ij yxa

NN
NNyxw

1

),(
)1(

),(, if N+ ≠ 0 . (5)

where N+ is defined as the number of word groups, for each orientation and each
point, with a positive membership grade. It attempts to formalize the intuitive concept
that point (x, y) is a distinguishing factor among character groups, when only a
restricted set of groups has membership values for that point.

Character classification is based on calculating a similarity matrix S. Each row
refers to a feature orientation i and each column to a character group j. The matrix
entries Sij are calculated as in [1]. The final classification step modifies the simple
additive weighted (SAW) method [8] used in the holistic recognizer [1]. The test
character is classified as belonging to the character group identified by the j* index,
which is defined as:

)(maxarg

1

1* Vr
S

j jN

i
ij

N

i
ijij

j w

w

×
′×

=

∑

∑

=

=

ν

ν
 . (6)

where vi, S’ij and rj are determined by:

∑
∑

=
yxi ij

yx ij
ij yxa

yxa

,,

,

),(

),(
ν ,

iji

ij
ij S

S
S

max
=′ ,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

)(
,)(min)(

Var
ar

ar
VarVr j

j
j

 . (7)

The new rj(V) factor compares the character image V aspect ratio with the average
aspect ratio arj of class j. The value of rj(V) is never greater than 1 and decreases as
the correspondence between the two aspect ratios decreases. Therefore, matching an
image with a given class is more likely when the aspect ratios are more similar. This
change from [1] increases recognition success.

5 Post-processing

After the core OCR stage of the recognition has been performed, a post-processing
stage ensures that the final results are meaningful and as fine-tuned as possible. This
stage consists in using a dictionary and a word distance metric to improve the
incorrect recognition results which were caused by faded and misprinted characters,
irregular character and word spacing, speckles and smudges.

102

The dictionary used was GNU ASpell, a free open-source spell checker [9], which
can suggest a rich set of words as possible corrections. It is still necessary to select
one out of the several suggestions returned by the ASpell routines. In order to do so,
the suggestion “closest” to the original word can be found by using the standard
Levenshtein (also called edit) distance metric [10]. It is defined for strings of
potentially different lengths and considers the least-cost path from one string to
another, in terms of character insertion, deletion and substitution. The importance of
this versatile behavior lies in the fact that recognition can incorrectly separate single
characters into several or merge a couple of characters into one.

The Levenshtein metric requires an auxiliary function r that compares two
characters within a string, as defined by:

r(c1, c2) = 0, if c1 = c2; r(c1, c2) = 0, if c1 ≠ c2 . (8)

where c1 and c2 are string characters. Let w1 and w2 be two word strings and w(i) be
the i-th character in word string w. To compute the Levenshtein value for w1 and w2,
of lengths m and n, respectively, a (m+1) × (n+1) matrix D must be built, with row
indices i = 0, 1, …, m and column indices j = 0, 1, …, n. The actual Levenshtein
distance L(w1, w2) is finally stored in Dm,n. Matrix D is initialized by:

Di,0 = i; i = 0, 1, …, m; D0,j = j; j = 0, 1, …, n . (9)

All other remaining values are calculated recursively by:

Di,j = min(Di-1,j + 1, Di,j-1 + 1, Di-1,j-1 + r(w1(i), w2(j))) . (10)

Conventional spell checking systems are optimized for typing mistakes. It is useful
to take advantage of specialized information on the errors found when performing
recognition on ancient documents. By manually proof-reading and correcting raw,
unfiltered recognized data, statistical information is built about the most common
errors made by the OCR software. This knowledge is used to improve the results of
the two developed post-processing filters: a spelling corrector and a word splitter.
Word confidence is computed as the average of its character confidence values and
only words below a given confidence threshold are post-processed. The notation
c1→c2 refers to an error consisting of misrecognizing true character c1 as character c2,
while n(c1, c2) represents the number of registered c1→c2 errors and N(c2) the number
of c→c2 errors in the whole registry for every character c. The base concept of
character error probability p for given characters c1 and c2 is defined as follows:

0),(21 =ccp , if 0)(2 =cN ;
)(
),(),(

2

21
21 cN

ccnccp = , if 0)(2 ≠cN . (11)

The error probability e(c) for character c is defined as the maximum of p(c1, c) for
every character c1. A character with error probability lower than a set threshold is not
considered by the fuzzy algorithm. Its original FineReader recognition is kept instead.

If a given word w is not found in the spell checker dictionary, spell correction
minimizes a given function across all suggested corrections s for the word w. This
function assigns a value to a possible correction according to the likelihood of the
recognition process making such a mistake. It should be greater for a lesser error
likelihood. The proposed function combines error probability information with the

103

Levenshtein algorithm. It is computed in exactly the same way as the standard
Levenshtein expression, except instead of (10), the following equation is used:

Di,j = min(Di-1,j + 1, Di,j-1 + 1, Di-1,j-1 + 1 – p(w1(i), w2(j))) . (12)

The third argument to the min operator corresponds to a character substitution.
This expression allows for the use of the Levenshtein distance in association with the
previously collected data concerning common recognition errors.

Word splitting is also a word filter and its objective is potentially dividing a word
into two or more strings, correcting frequent pre-processing mistakes that join
adjacent words. These are mostly caused by extraneous graphical elements or printing
defects. Fig. 4 shows two words joined due to their proximity and smudges.

Fig. 4. Two words, “como” and “da”, joined by the extraction process

Word splitting works in text space and returns a list containing the words the
original is divided into. The notation w1|w2 stands for a split of a given word w into
two words w1 and w2; w is the concatenation of w1 with w2 and w2 can be empty, in
which case w and w1 are equal. The pseudo-code for the algorithm is presented next:

WordSplit(Word w)
 Find best division w1|w2 of w;
 If w2 is not empty, ResultList = WordSplit(w2);
 Else, ResultList = new empty word list;
 Add w1 to front of ResultList;
 Return ResultList.

A word can be recursively sub-divided by this process until the best possible

division is no division at all. Finding the best division of any given word is the crucial
step. Since evaluating word splits is not straightforward, a heuristic function v was
developed. The best division w1|w2 of w minimizes v(w, w1); w2 is considered in the
recursive call to WordSplit. This heuristic uses a function s defined as:

s(w) = min {L(w, ws) : ws ∈ Sw} . (13)

where L is the weighted Levenshtein applied in spell correction and Sw is a set
containing all possible suggested corrections to w. Finally, the heuristic used is:

v(w, w1) = exp(a × s(w1)) × log(b × n) – c × n1 . (14)

where a, b and c are positive parameters, adjusted empirically, and n and n1 are the
lengths of words w and w1 respectively. This heuristic combines three criteria,
assigning each one a certain degree of relevance. The priority factor is the value of
s(w1), i.e. the likelihood that w1 corresponds to a legitimate isolated word, relying on
suggested words distance, since some characters may have been misrecognized. Next,
the new word length is taken into account. Splitting into many small words is
avoided, aiming instead towards larger, correct strings. Finally, the original word
length is considered, in order to scale the other values, which otherwise led to

104

disparate results among a set of words. The use of exponential-, logarithmic- and
linear-growth factors is based on the relative importance of each, adjusted through
experimentation. Although spell correction was presented first, it is executed last, so
that improperly separated words do not interfere with the spell correction, which was
built assuming that a given string is similar, in length and content, to the written word.

6 Results

In this section, test results, gathered for the purpose of analyzing the software
performance and correctness, are presented. Before large tests could be conducted, a
training character database was created from 1980 alphabetic characters, classified
manually. Recognition is possible once the training structure has been generated. In
order to test various development options, the training data from this database is used
in the classification of another previously identified 1580 character set, which works
as a validation set. The final system achieved a per-character success rate of 87.5%.

Fig. 5. Sample from 20 page test set

Verifying the results is very time-consuming, so the executed tests were selected
carefully within practical limits in order to be representative and closely convey the
application performance in an actual common usage environment. The main test set
consists of 20 pages acquired with variable scanning conditions, namely skewing and
paper see-through, with both non-italic and italic text. It contains 1886 words
consisting in 8034 characters, as segmented by the FineReader engine. The source
book [11] concerns Portuguese language orthography, providing a large variety of
characters and formatting properties. Fig. 5 shows a sample paragraph.

Table 1. Per-character success rates

System 20 page set success (%)
FineReader engine 86.9
Fuzzy recognizer 88.0

Per-character results for this test set are summarized in Table 1. Both systems

successfully classified between 87% and 88% of the 8034 characters. The
improvement introduced by the fuzzy recognizer is very slight, although consistent.
Many errors occur due to printing defects and strong similarity between certain key
characters. The fuzzy recognizer was unable to handle these problems, possibly owing
to its holistic origins and the limited distinctive feature set of character images. On the
other hand, the tests show that its performance is comparable to the FineReader

105

engine OCR, a sophisticated commercial software, virtually matched here by this new
fuzzy application.

An additional 12 page, 1590 word set, from a different book discussing the
Portuguese language, was also used for some tests. It has diverse typesets and several
printing problems, even though scanning quality is quite high. The two test sets were
used to assess the standard FineReader and fuzzy recognizer outputs with and without
post-processing filters. Table 2 shows the success rate for each of these cases in the
two test sets. Recognition output was analyzed on a word basis; any word with at least
one misclassified character is considered wrong; checking is case-insensitive and
graphical accents are ignored. The available Portuguese dictionary contains strictly
modern spelling, so it is unable to correct archaic words. An ancient Portuguese
dictionary would be an immense improvement; several well-recognized words were
actually damaged because their spelling is unknown to contemporary checkers.

Table 2. Per-word success rates

System 20 page set
success (%)

12 page set
success (%)

FineReader engine 62.9 34.6
Fuzzy recognizer 64.1 35.6
FineReader + post-processing 65.0 40.0
Fuzzy recognizer + post-processing 63.6 39.9

Per-word results can be considered unfair towards the FineReader and fuzzy

recognizers, because these are character-based and not word-based. Most wrong
words had few incorrect characters, explaining why analytic success rates are higher
than holistic rates. However, a per-word check was performed to enable a comparison
between the raw recognizer classification and the post-processed output. Table 2
shows that splitting and spell correction applied directly to the FineReader output
improved the results noticeably when the recognizer performance was weaker (a
nearly 16% improvement for the 12 page set), although there was little progress in the
larger experience. However, the fuzzy recognizer output did not equally improve
when post-processed. Results worsened for the 20 page set and were nearly identical
to the post-processed FineReader results for the smaller set. This may be explained by
fuzzy recognizer errors introduced when feature extraction fails or is insufficient.
These can misguide the spell checker by introducing unexpected characters, more so
because of the ancient spelling, unknown to modern dictionaries. Some post-
processing side-effects, such as the excessive splitting of misrecognized words, could
be minimized through parameter adjustments and, again, a more adequate dictionary.

7 Conclusions

This paper proposed an OCR system for 17th century documents based on fuzzy
pattern recognition. The processing sequence was presented, from the training stage to
the classification process, followed by post-processing according to language and
error probability data. Finally, test results and procedure were summarized.

106

Building upon the FineReader engine, recognition improvements were noticeable
with both fuzzy recognizer and dictionary-based post-processing. The former system
achieved a success rate comparable to that of a mature commercial software package
and is open to further enhancement. The output filters developed can increase the
output trustworthiness, especially if the appropriate dictionary resources are available.
Combining these two systems compatibly has not yet been fully accomplished.

Further work can include the development of an automatic parameter adjustment
system based on measurable properties of the documents being processed, the
definition of better word distance metrics, the introduction of more accurate heuristics
and the development of an ancient word dictionary for improved spell checking.

Acknowledgements

This work was partly supported by: the “Programa de Financiamento Plurianual de
Unidades de I&D (POCTI), do Quadro Comunitário de Apoio III”; the FCT project
POSI/SRI/41201/2001; “Programa do FSE-UE, PRODEP III, no âmbito do III
Quadro Comunitário de apoio”; and program FEDER. We also wish to express our
acknowledgments to the Portuguese Bibioteca Nacional, whose continuous support
has made possible this work.

References

1. R. Buse, Z.Q. Liu, J. Bezdek, “Word Recognition Using Fuzzy Logic”, in IEEE Transactions
on Fuzzy Systems, vol. 10, no. 1, Fev. 2001, pp. 65-76

2. João M.C. Sousa and Uzay Kaymak, "Fuzzy Decision Making in Modeling and Control",
World Scientific, Singapore and UK, Dec. 2002

3. R. Buse, Z.Q. Liu, T. Caelli, “A structural and relational approach to handwritten word
recognition”, in IEEE Trans. Syst., Man, Cybern., vol. 27, no. 25, Oct. 1997, pp 847-861

4. Parker, J.R., “Algorithms for Image Processing and Computer Vision”, John Wiley & Sons,
New York, USA, 1998

5. N. Otsu, "A threshold selection method from gray level histograms", IEEE Transactions on
Systems, Man, and Cybernetics, vol. 9, pp. 62-66, 1979

6. Godfried Toussaint, “Solving Geometric Problems with the Rotating Calipers”, in Proc.
IEEE MELECON'83, 1983, pp. A10.02/1-4

7. James D. Foley et al, “Computer Graphics – Principles and Practice”, Second Edition in C,
Addison-Wesley, Reading, Massachussets, USA, 1990

8. C. L. Hwang, K. Yoon, “Multiple Attribute Decision Making, Methods and Applications, A
State-of-the-Art-Survey”, Springer-Verlag, Berlin, Germany, 1981

9. K. Atkinson, GNU Aspell Homepage, http://aspell.net, GNU Project
10. V. I. Levenshtein, "Binary codes capable of correcting deletions, insertions and reversals",

Soviet Physics Doklady, vol. 6, pp. 707-710, 1966
11. Álvaro Ferreira de Véra, “Orthographia ou modo para escrever certo na lingua Portuguesa”,

17th century, available at Biblioteca Nacional
12. ABBYY FineReader Homepage, http://www.abbyy.com, ABBYY Software House

107

