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Abstract. This paper proposes an optical character recognition system based on 
fuzzy logic for 17th century printed documents. The process consists of two 
stages: training with collected character image examples and new character 
image classification. Training builds fuzzy membership functions from aligned 
oriented features extracted using Gabor filters. These are used in classification 
to select a most likely character group for new data. A post-processing stage 
with a proposed modified Levenshtein word distance metric further improves 
results. A success rate of 88% is achieved on a significant test set. 

1 Introduction 

Optical character recognition (OCR) is a practical application of state-of-the-art 
image processing and pattern recognition developments. Current communication 
facilities could allow broad distribution of vast libraries of books, newspapers, 
magazines and all kinds of printed media, if quality, cost-effective OCR procedures 
are available for mass digitizing. While modern printed text can be recognized very 
accurately with commercially available software, performing OCR on material such 
as gothic fonts, ancient typesets and handwriting is noticeably less successful. 

This paper proposes a character recognition system specifically tailored to ancient 
documents (17th century) and corresponding typesets based on a handwriting OCR 
system using fuzzy logic [1]. The use of fuzzy classification [2] improves results by 
providing larger tolerance for unstable typesetting and printing technologies. The 
original modifications introduced to [1] are reported and explained along the article. 
A modified probabilistic Levenshtein word distance metric is also proposed, coupled 
with a post-processing system that is able to correct both character recognition and 
word segmentation. 

Unlike the original holistic system, recognition is performed from an analytic 
perspective, i.e., by taking each character separately. The recognition procedure 
works in two steps. The first step, training, considers sets of character images, known 
as character groups, and combines their dominant graphical features. These are then 
used to build fuzzy membership functions that, in a sense, describe the visual 
attributes of every character group. For the second step, classification, a new character 
image is compared to the training results. The closest match, dictated by a fuzzy 
decision maker, is returned as the most likely classification. The final post-processing 
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stage, based on spell checking, word distance metrics and probabilistic error 
information, is able to increase recognition success further, by selecting character 
corrections and improving word segmentation.  

2 System Overview 

This section intends to give an introduction to the general functioning of the 
developed application. Fig. 1 displays a diagram representing schematically the 
organization of the developed system and the streamlined design connecting its 
components. The main application relies on a commercial OCR package, ABBYY 
FineReader Engine [12], in order to obtain individual character images automatically. 
This package also provides methods to segment entire words, as well as its own OCR 
output. This information is used to build a manually classified character database, 
which is applied in the training stage to build models for every known character. The 
main module is then able to assign a most likely classification to other character 
images, thus performing the intended OCR on characters with high error probability. 
Word segmentation information, on the other hand, is considered and improved upon 
in the final post-processing step, which also takes advantage of spell checking and 
probabilistic error information. 
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Fig. 1. System overview diagram 

The underlying system for the recognition engine is based on a handwriting OCR 
system using fuzzy logic [1]. The following sections describe the original changes 
applied to this system in order to build the intended analytic recognizer. 

3 Training 

In this section, the fuzzy recognition training process is described, highlighting 
particularly the several modifications performed on the original recognizer. 

The dominant features of a character consist of what is more common not to 
change between typing styles, such as the long vertical stroke in the b’s and t’s, for 
example. In this paper their extraction is performed through Gabor filter banks, which 
allow oriented feature extraction. The Gabor filter is a typical wavelet that offers 
localized operations [3]. Part of its parameters specify the Gabor wavelet direction φ 
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[3], as shown in Fig. 2, and the image region from which we intend to extract 
character features. Other parameters are character dependent, which means that the 
estimation has to take into account the image and the thickness of the writing [3]. For 
this reason, usually, their values are selected on a trial-and-error basis. For this paper, 
12 wavelet directions were considered, from 0º to 180º. 
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Original image Gabor filter (φ = 0º) After applying the filter 
   

 Example of oriented feature extraction using Gabor filters 

 filtering process is virtually identical to that in [1]. However, the original 
 required a time-consuming alignment algorithm, needed to compensate for 
ons in character spacing and shape and normalize word bounds. This procedure 
isabled because it can produce heavy distortion when feature match is not 
ve. A single character has a smaller number of dominant features; printing 
 common in this context, complicate feature matching even further. Character 
ntation is also tight and accurate from the beginning. 
each training sample of the same character contains essentially the same 

ted features structure, the major structural components can be established by 
 the standardized images together, which forms the composite image for each 
 character. Character images are classified manually; ancient characters are 

d as their present-day equivalent, therefore solving the problem of generating 
rd ASCII text from these occurrences. 
like the original system as presented in [1], information regarding image aspect 
is also stored. The average aspect ratio arj for each group j is defined as: 
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 Ij,k is the k-th sample image for character group j, Nj is the total number of 
s for group j and ar(I) is the quotient between the width and the height of image 
 arj values are used as further assistance in the classification of new characters. 
ore the classification process can take place, a set of fuzzy membership 
ons is generated for each character group and each orientation based on the 
ted features of the training images. These intend to provide a description of the 
 features for use within the recognition algorithm. 
mbership function generation begins by thresholding the feature image. Upper 
wer thresholds Hu and Hl respectively are used to binarize the image [4], finding 
per and lower boundaries for each feature. These thresholds depend on the 
um intensity of the image and on constants cu and cl, set at 0.4 and 0.25, 
tively. These values are determined empirically [1], but a standard binarization 
d [5] may also be effective. Two bounding rectangles are found around each 
ted feature [6], corresponding to each intensity threshold, as shown in Fig. 3(a). 



 

 
Fig. 3. (a) Bounding rectangles around extracted features; (b) Generated membership functions 

Each rectangle pair is used to build a partial membership function. Its value µ(x, y) 
is 1 in the inner rectangle area and zero outside the outer rectangle. The vertices of a 
rectangle pair are linked based on Euclidean distance minimization. The intermediate 
function values are interpolated [7], forming a twisted trapezoidal shape. To do so, the 
domain is divided into 13 regions; the equations used to compute the function values 
can be found in [1]. An example is graphically represented in Fig. 3(b). 

The global membership function for a given orientation i, denoted as ai(x, y), is 
defined as the maximum of the partial membership functions at each point, to deal 
with cases in which features overlap, thus taking into account only the most relevant 
feature. These maximum values are found continuously during the membership 
function generation process, in order to minimize resource usage. 

4 Classification 

The next step in the OCR process is the classification of new characters. The input for 
this stage is a character image V and the training structures. First, the image is run 
through Gabor filter banks, a process already applied in the training phase. The 
intensity of point (x, y) of the resulting image is denoted as V’i(x, y) for orientation i. 

The objective is to compare the image features with the membership function 
values. Weights wij(x, y) were assigned to each image point (x, y), for each orientation 
i and each character group j, to measure its influence, related mostly to membership 
function values. Similar points should be assigned a positive weight, and those that 
prove dissimilarity should penalize the rating. Weights are calculated according to: 

wij(x, y) = V’i(x, y), if aij(x, y) = 0 . (2) 

wij(x, y) = w’ij(x, y), if aij(x, y) ≠ 0 . (3) 

Equation (2) assures that points where V’i  is not zero, but the membership function 
is, will be penalized. This happens when a feature does not match any of orientation i 
for word group j. In this case, the value lowers the computed similarity rating. In [1], 
a somewhat different formal notation is used, in part to account for the distinction 
between the various partial membership functions. In this paper, the partial functions, 
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each corresponding to one feature, are iteratively combined, simplifying notation and 
improving computational resource usage. 

The rate of significance of point (x, y) in (3) is denoted by w’ij(x, y). Being Nc the 
total number of character groups, w’ij(x, y) is given by: 

w’ij(x, y) = 0, if N+ = 0 . (4) 
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where N+ is defined as the number of word groups, for each orientation and each 
point, with a positive membership grade. It attempts to formalize the intuitive concept 
that point (x, y) is a distinguishing factor among character groups, when only a 
restricted set of groups has membership values for that point. 

Character classification is based on calculating a similarity matrix S. Each row 
refers to a feature orientation i and each column to a character group j. The matrix 
entries Sij are calculated as in [1]. The final classification step modifies the simple 
additive weighted (SAW) method [8] used in the holistic recognizer [1]. The test 
character is classified as belonging to the character group identified by the j* index, 
which is defined as: 
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where vi, S’ij and rj are determined by: 
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The new rj(V) factor compares the character image V aspect ratio with the average 
aspect ratio arj of class j. The value of rj(V) is never greater than 1 and decreases as 
the correspondence between the two aspect ratios decreases. Therefore, matching an 
image with a given class is more likely when the aspect ratios are more similar. This 
change from [1] increases recognition success. 

5 Post-processing 

After the core OCR stage of the recognition has been performed, a post-processing 
stage ensures that the final results are meaningful and as fine-tuned as possible. This 
stage consists in using a dictionary and a word distance metric to improve the 
incorrect recognition results which were caused by faded and misprinted characters, 
irregular character and word spacing, speckles and smudges. 
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The dictionary used was GNU ASpell, a free open-source spell checker [9], which 
can suggest a rich set of words as possible corrections. It is still necessary to select 
one out of the several suggestions returned by the ASpell routines. In order to do so, 
the suggestion “closest” to the original word can be found by using the standard 
Levenshtein (also called edit) distance metric [10]. It is defined for strings of 
potentially different lengths and considers the least-cost path from one string to 
another, in terms of character insertion, deletion and substitution. The importance of 
this versatile behavior lies in the fact that recognition can incorrectly separate single 
characters into several or merge a couple of characters into one.  

The Levenshtein metric requires an auxiliary function r that compares two 
characters within a string, as defined by: 

r(c1, c2) = 0, if c1 = c2; r(c1, c2) = 0, if c1 ≠ c2 . (8) 

where c1 and c2 are string characters. Let w1 and w2 be two word strings and w(i) be 
the i-th character in word string w. To compute the Levenshtein value for w1 and w2, 
of lengths m and n, respectively, a (m+1) × (n+1) matrix D must be built, with row 
indices i = 0, 1, …, m and column indices j = 0, 1, …, n. The actual Levenshtein 
distance L(w1, w2) is finally stored in Dm,n. Matrix D is initialized by: 

Di,0 = i; i = 0, 1, …, m; D0,j = j; j = 0, 1, …, n . (9) 

All other remaining values are calculated recursively by: 

Di,j = min(Di-1,j + 1, Di,j-1 + 1, Di-1,j-1 + r(w1(i), w2(j))) . (10) 

Conventional spell checking systems are optimized for typing mistakes. It is useful 
to take advantage of specialized information on the errors found when performing 
recognition on ancient documents. By manually proof-reading and correcting raw, 
unfiltered recognized data, statistical information is built about the most common 
errors made by the OCR software. This knowledge is used to improve the results of 
the two developed post-processing filters: a spelling corrector and a word splitter. 
Word confidence is computed as the average of its character confidence values and 
only words below a given confidence threshold are post-processed. The notation 
c1→c2 refers to an error consisting of misrecognizing true character c1 as character c2, 
while n(c1, c2) represents the number of registered c1→c2 errors and N(c2) the number 
of c→c2 errors in the whole registry for every character c. The base concept of 
character error probability p for given characters c1 and c2 is defined as follows: 
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The error probability e(c) for character c is defined as the maximum of p(c1, c) for 
every character c1. A character with error probability lower than a set threshold is not 
considered by the fuzzy algorithm. Its original FineReader recognition is kept instead. 

If a given word w is not found in the spell checker dictionary, spell correction 
minimizes a given function across all suggested corrections s for the word w. This 
function assigns a value to a possible correction according to the likelihood of the 
recognition process making such a mistake. It should be greater for a lesser error 
likelihood. The proposed function combines error probability information with the 
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Levenshtein algorithm. It is computed in exactly the same way as the standard 
Levenshtein expression, except instead of (10), the following equation is used: 

Di,j = min(Di-1,j + 1, Di,j-1 + 1, Di-1,j-1 + 1 –  p(w1(i), w2(j))) . (12) 

The third argument to the min operator corresponds to a character substitution. 
This expression allows for the use of the Levenshtein distance in association with the 
previously collected data concerning common recognition errors. 

Word splitting is also a word filter and its objective is potentially dividing a word 
into two or more strings, correcting frequent pre-processing mistakes that join 
adjacent words. These are mostly caused by extraneous graphical elements or printing 
defects. Fig. 4 shows two words joined due to their proximity and smudges. 

 

 
Fig. 4. Two words, “como” and “da”, joined by the extraction process 

Word splitting works in text space and returns a list containing the words the 
original is divided into. The notation w1|w2 stands for a split of a given word w into 
two words w1 and w2; w is the concatenation of w1 with w2 and w2 can be empty, in 
which case w and w1 are equal. The pseudo-code for the algorithm is presented next: 

 
WordSplit(Word w) 
 Find best division w1|w2 of w; 
 If w2 is not empty, ResultList = WordSplit(w2); 
 Else, ResultList = new empty word list; 
 Add w1 to front of ResultList; 
 Return ResultList. 

 
A word can be recursively sub-divided by this process until the best possible 

division is no division at all. Finding the best division of any given word is the crucial 
step. Since evaluating word splits is not straightforward, a heuristic function v was 
developed. The best division w1|w2 of w minimizes v(w, w1); w2 is considered in the 
recursive call to WordSplit. This heuristic uses a function s defined as:  

s(w) = min {L(w, ws) : ws ∈ Sw} . (13) 

where L is the weighted Levenshtein applied in spell correction and Sw is a set 
containing all possible suggested corrections to w. Finally, the heuristic used is: 

v(w, w1) = exp(a × s(w1)) × log(b × n) – c × n1 . (14) 

where a, b and c are positive parameters, adjusted empirically, and n and n1 are the 
lengths of words w and w1 respectively. This heuristic combines three criteria, 
assigning each one a certain degree of relevance. The priority factor is the value of 
s(w1), i.e. the likelihood that w1 corresponds to a legitimate isolated word, relying on 
suggested words distance, since some characters may have been misrecognized. Next, 
the new word length is taken into account. Splitting into many small words is 
avoided, aiming instead towards larger, correct strings. Finally, the original word 
length is considered, in order to scale the other values, which otherwise led to 
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disparate results among a set of words. The use of exponential-, logarithmic- and 
linear-growth factors is based on the relative importance of each, adjusted through 
experimentation. Although spell correction was presented first, it is executed last, so 
that improperly separated words do not interfere with the spell correction, which was 
built assuming that a given string is similar, in length and content, to the written word. 

6 Results 

In this section, test results, gathered for the purpose of analyzing the software 
performance and correctness, are presented. Before large tests could be conducted, a 
training character database was created from 1980 alphabetic characters, classified 
manually. Recognition is possible once the training structure has been generated. In 
order to test various development options, the training data from this database is used 
in the classification of another previously identified 1580 character set, which works 
as a validation set. The final system achieved a per-character success rate of 87.5%. 

 

 
Fig. 5. Sample from 20 page test set 

Verifying the results is very time-consuming, so the executed tests were selected 
carefully within practical limits in order to be representative and closely convey the 
application performance in an actual common usage environment. The main test set 
consists of 20 pages acquired with variable scanning conditions, namely skewing and 
paper see-through, with both non-italic and italic text. It contains 1886 words 
consisting in 8034 characters, as segmented by the FineReader engine. The source 
book [11] concerns Portuguese language orthography, providing a large variety of 
characters and formatting properties. Fig. 5 shows a sample paragraph. 

Table 1. Per-character success rates 

System 20 page set success (%) 
FineReader engine 86.9 
Fuzzy recognizer 88.0 

 
Per-character results for this test set are summarized in Table 1. Both systems 

successfully classified between 87% and 88% of the 8034 characters. The 
improvement introduced by the fuzzy recognizer is very slight, although consistent. 
Many errors occur due to printing defects and strong similarity between certain key 
characters. The fuzzy recognizer was unable to handle these problems, possibly owing 
to its holistic origins and the limited distinctive feature set of character images. On the 
other hand, the tests show that its performance is comparable to the FineReader 
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engine OCR, a sophisticated commercial software, virtually matched here by this new 
fuzzy application. 

An additional 12 page, 1590 word set, from a different book discussing the 
Portuguese language, was also used for some tests. It has diverse typesets and several 
printing problems, even though scanning quality is quite high. The two test sets were 
used to assess the standard FineReader and fuzzy recognizer outputs with and without 
post-processing filters. Table 2 shows the success rate for each of these cases in the 
two test sets. Recognition output was analyzed on a word basis; any word with at least 
one misclassified character is considered wrong; checking is case-insensitive and 
graphical accents are ignored. The available Portuguese dictionary contains strictly 
modern spelling, so it is unable to correct archaic words. An ancient Portuguese 
dictionary would be an immense improvement; several well-recognized words were 
actually damaged because their spelling is unknown to contemporary checkers.  

Table 2. Per-word success rates 

System 20 page set 
success (%) 

12 page set 
success (%) 

FineReader engine 62.9 34.6 
Fuzzy recognizer 64.1 35.6 
FineReader + post-processing 65.0 40.0 
Fuzzy recognizer + post-processing 63.6 39.9 

 
Per-word results can be considered unfair towards the FineReader and fuzzy 

recognizers, because these are character-based and not word-based. Most wrong 
words had few incorrect characters, explaining why analytic success rates are higher 
than holistic rates. However, a per-word check was performed to enable a comparison 
between the raw recognizer classification and the post-processed output. Table 2 
shows that splitting and spell correction applied directly to the FineReader output 
improved the results noticeably when the recognizer performance was weaker (a 
nearly 16% improvement for the 12 page set), although there was little progress in the 
larger experience. However, the fuzzy recognizer output did not equally improve 
when post-processed. Results worsened for the 20 page set and were nearly identical 
to the post-processed FineReader results for the smaller set. This may be explained by 
fuzzy recognizer errors introduced when feature extraction fails or is insufficient. 
These can misguide the spell checker by introducing unexpected characters, more so 
because of the ancient spelling, unknown to modern dictionaries. Some post-
processing side-effects, such as the excessive splitting of misrecognized words, could 
be minimized through parameter adjustments and, again, a more adequate dictionary. 

7 Conclusions 

This paper proposed an OCR system for 17th century documents based on fuzzy 
pattern recognition. The processing sequence was presented, from the training stage to 
the classification process, followed by post-processing according to language and 
error probability data. Finally, test results and procedure were summarized. 
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Building upon the FineReader engine, recognition improvements were noticeable 
with both fuzzy recognizer and dictionary-based post-processing. The former system 
achieved a success rate comparable to that of a mature commercial software package 
and is open to further enhancement. The output filters developed can increase the 
output trustworthiness, especially if the appropriate dictionary resources are available. 
Combining these two systems compatibly has not yet been fully accomplished. 

Further work can include the development of an automatic parameter adjustment 
system based on measurable properties of the documents being processed, the 
definition of better word distance metrics, the introduction of more accurate heuristics 
and the development of an ancient word dictionary for improved spell checking. 
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