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Abstract: In this paper, the amplitude and variance-constrained LQG control is considered for a plant given by discrete-
time ARMAX model. The minimization of constrained quadratic cost is approached by Kalman filter, ap-
proximation of the probability density function (pdf) of the state by the Gaussian one and by by tuning of the
Lagrange multiplier. The obtained optimization algorithm is simulated for second-order stable plant model
and different constraints.

1 INTRODUCTION 2 PROBLEM FORMULATION

Control input constraints are ubiquitous in many con- The plant is given by a discrete-time ARMAX model
trol applications, therefore including them in a con-

trol system design is of practical importance. Hard- Al Yy =Bl Hu +Clg e, (1)

limit input constraint and variance or mean-square in- . .

put constraint are of the most frequent occurrence in Where4, B, C'are polynomials in the baCkwa[quh'ﬁ
industrial control processes. Neglecting these con- OPeratorg” , i.e.,A= 1+ aig” 4+ anag ",
straints in the controller design may lead to perfor- © = blqﬁﬂf b ™, O =14 g
mance deterioration or even instability of the control "+ ¢ned ", y¢ IS the outputy is the control input,
system. Specifically, the unstable open-loop systems@Nd{¢:} is assumed to be a sequence of independent
in the presence of constrained control signal can not f2ndom variables with zero mean and variange

be globally stabilizable. Consider the stationary cost function

The problem addressed in this paper is the LQG con- J
trol of ARMAX plant in the presence of simultane- !

ous amplitude and variance constrained input The where the output and input variandggy?], E[u?] are
constrained control problem is approached using the yonoted ag? ando?, respectively anqtu > 0. e

Kalman filter and approximation of the pdf of the e ampjitude and variance constraints imposed on
Kalman filter output by the Gaussian pdf. Analy- the control input are given as follows

sis and computer simulations of second-order systems
are given. lug| < o, (3)
It should be noted that in the literature the considered 2 o 2 4)
LQG control problem is treated mostly for separate Tu =€
control constraints, see for example in gikowski, It is known that ARMAX model (1) has an equivalent
1997, Makila, 1982, Makila et at, 1984, Toivonen, jnnovation state space representation

1983).

= By} + quui] = 0, + quos, )

T = Fa, + gue + keeq, (5)
Yt = ETQ + e, (6)
for na = nb = nc = n, where the corresponding vec-
tors areg = (by,...,bn)" k. = (c1 —a,...,cn —
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a,)T,h=(1,0,...,0)T, and
—aq 1...0
. 0
F= —Aanp—-1 - --- 1
—an, . 0

The associated Kalman filter is

2y = F&, + gu(t) + ke, (7)

wherek is the stationary gain vector, age = y; —
h*'z, with varianceo? = h” Pyh + o2. The matrix
Py is the solution to the following Riccati equation

P, = FP.FT —
—(FPph+ 0¢ke)(FPoh + o2k,)" x (8)
x(hT Peh+02) " + k ko2,

The goal of the control is to minimize the loss func-
tion J; under the given structure of the controller
specified by the feedback gain vecipom the case of
the Kalman filter-based controller subject to the am-
plitude and variance constrints (3), (4). Thus, the con-
strained control law has a form

(9)

wheresat denotes a saturation function afidis the
output of the Kalman filter (7).

Ug = sat(iT@t;a),

3 CONTROL UNDER
AMPLITUDE CONSTRAINT

Consider now the cost function
J = E[ngwgt + Quu?] =1rQs Ry + Quo'?u (10)

whereR, = Ez,zl, R, = Rz + Py andR; =
E@t@f. If the weight matrix@,. is such that), =
hh™ then itis easy to see that the cost functib(iL0)
can be considered as an alternative formulation/for
(2) w.r.t. minimization.

Using any stabilizing feedback control law, the fol-
lowing stationary equation foR; resulting from (7)
can be derived

R; = FRyFT + FRyug" + gRL, FT +

+ongg" +oskk", (11)
whereR;,, = EZ,u;. The approximate expressions
for 02 and R;,, under the constrained control law (9)
are (Toivonen, 1983):

2

02 =0%91(0), Riu = R; fga(0), (12)

where
o= f"R;f

(13)

andgi(0) = erf(ac=1272) — ac~2%ier fe(ax
xo71272), go(o erf(ac—'272). Introducing
(12), (13) into (11) one obtains an equation that en-
ables iterative calculation d®;. The corresponding

cost function (10) takes then the form

J(f) = tr(Qu + qugr (o) ffT)Rs +
+terPk =
= Jf(f) + t’r’Qsz.

(14)

Using the gradient of/;(f) the following iterative
algorithm for calculating the feedback gajnin the
control law (9) can be proposed (Tovoinen, 1983)

i(’f+1) — i(k) + ozk§(k), (15)
whereqy, is the step length and
(k)T _s
ST _ (k) (%?) (R;m) (16)
for the gradient given as
(k)T
@Jf) = TR, (7)

Calculations for k-th iteration are performed for

™). Expressions forl®), ¢*) are given as follows
(Tovoinen, 1983):

; Kgl(o'(k)) +h1(a<k>)g2<k>) "

< (gTS(k)QJF Qu):| ! ,
9 [(Ql(gw) n h1(0<k))02<k>> %

X (gTS(k)g—Fqu) FOT
+ 92(U(k))gTS(k)F+
+ 2ha(0)g" P PRy fOT]

dk)

i

el

whereS®) is a positive definite solution of the equa-
tion

S® = FTSWF L Q.+
+f® {(gl(am) +h1(0<k>)02<k>) %

x (QTS(’“)Q + qu) +

+ 2h2(a<’“>)gTs<k)FR;’“>i<’f>} FOT

+92(U(k))(FT5(k)ﬂ(k)T +i(k)gTS(k)F).

As an initial iteration for calculation QR;’“) one can
take for exampler!” = ¥, = kk"o?2, and f
where () results from the standard unconstrained



solution of LQG problem. It is convenient to take 5 SIMULTANEOUSAMPLITUDE

the same value of ¥ as an initial iteration in (15). AND VARIANCE
It can be shown (Tovoinen, 1983) that there is a con- CONSTRAINTS

stanta > 0 such that for every, € (0, a) it holds

Tr(f*D) < T (£, First, it can be observed that the amplitude constraint
« (3) restricts itself the input variance because <

if (91y(k) i
It (7)) # 0. Thus, the proper choice of step «?. Taking into account (4) and assuming= o2

assures the convergence of the algorithm. one obtains
2
v < PR (23)
4 CONTROL UNDER VARIANCE This means that if for a given amplitude constraint
CONSTRAINT a given variance constraint has a fome 2, then it

_ o ) is automatically fulfilled and optimization of the feed-
In the case of variance constraint given by the inequal- hack gain can only be performed wrt amplitude con-

ity (4) the associated Lagrangian is straint as shown in Section 3. On the other hand, if
L=J+ o2 —-¢?) (18) for a givena, a given variance constraint is such that
2 9 . .
or alternatively, the Lagrangiah can be rewritten 7 < ¢z then a problem may have an optimization
L=trQ.R, + (qu + \)o2, (19) sense according to the problem formulated in Section

where) > 0 is the Lagrange multiplier. The Kuhn- 2. The proposed algorithm consists of the following
Tucker necessary conditions for the constrained min- St€ps:

imum of L age 5 step 1: TakeA® > 0,hg = 1,0 < ap < 1.
L L
oy <0 57 =0 (20)  step 2. Calculatef®) according to the method given
f in Section 3 for
The optimal variance constrained control strategy can *) *)
be computed by solving the conditions (20). In prac- Ty’ = qut+ A (24)
tice, this is done iteratively, as it will be shown in Sec- ) _ )
tion 5. step 3: CalculateR?,™ according to eqn. (11) taking
The controller to be designed is of the form into account (12), (13), i.e.
up = f1a, (21) RY = FRVFT 4

where f follows from ap?propriate Riccati equation

J_ (k) p(k) T T(k) pT (k) T
and &, is the Kalman filter output. The minimiza- HFR g +gf R TET) X

tion of the Lagrangian (19) w.rt. all admissihlg is ><92((,0«)) + @TiT“)R;k)f’“)gl(a(’“)) +
closely related to the minimization of the loss func- T o
tion J subject to the constraint (4). i = f*T@t +kk oy (25)

minimizes the Lagrangian (19), and the inequality and
constraint (4) and complementary condition

AMo2 =) =0 22) o2 = fTORY (g, (0h),  (26)
are fulfilled atu?, thenu; is also an optimal control o?0) = fTR) R p(k) (27)

signal for variance-constrained control problem. )

A major problem is the determination of appropriate Step 4: Check out the value (22), i.e.

estimates for the Lagrange multipligrsuch that the W) = A (520 _ 2y, (28)
conditions (4) and (22) are satisfied fof. In prac- u
tice this is done iteratively where each iteration step  |f (®) s sufficiently close to zero, according to
k consists of solving a standard LQG problem, i.e.  some prescribed criterion then STOP, otherwise go
of minimizing the Lagrangian (19) with = A(*) to step 5.

and of updating the Lagrange multiplier according to
a suitable algorithm. A realization of this algorithm
needs the appropriate equations foy ando2, (see
eqgns.(25), (26)). AXNF) by AR

An iterative algorithm for updating the Lagrange mul- by = hj—1 + Ap® ;o (29)
tiplier \(*) proposed in (Mkila, 1982, Makila et at,

1984) can be combined with an algorithm described ~ where AXF) = X(F) — \(E=1) - Agy(k) = (k) _
in Section 3 to yield the algorithm given below. =1 andy(®) is given by (27).

step 5: If £ = 0, then go to step 6, otherwise update
h;. (if positive) according to




step 6: Update the multipliea(®) according to IFAC Symp.on Syst.ldentSYSID'97, Kitakyushu,
8 - 11 July 1997, Vol.1, pp.345-350.

k k k). y(k
AFFD = A0 - sat(Brhip™);aA V), (30) Makila, P.M. (1982). Constrained liner quadratic
gaussian control for process application,

where) < a < 1. Academic dissertation Report 82-6, Process

step 7. Calculates; ; according to Control Laboratory, Abo, Finland.
Makila, P.M., T. Westerlund and H.T. Toivonen
—1 1 ’
Br+1 = Be(vo — Be) (o — 1), (31) (1984).  Constrained linear quadratic gaussian con-
wherey, > 1. Takek — k + 1 and go to step 2. t[r)(:)l 1Vf\3”.t;9 process applications. Automatica 20(1),

It should be noted that in the case of tight constraints Tojvonen H.T. (1983). Suboptimal  control  of

the problem may not have a solution, i.e. the set of  discrete stochastic amplitude constrained systems,

feedback gains for which the cost function has finite Int.J.Contro| Vol.37, No.3, pp.493-502.

values can be empty. Toivonen, H.T. (1983). Variance constrained self tun-
ing control,Automatica 19(4), pp.415-418.

-1.15

6 SIMULATION RESULTS .
Consider the ARMAX plant described by the fol- _.™**f
lowing stable modeld = 1 + 1.8¢7! — 0.9¢72, 13 : 1
B(q~') = ¢7% C(¢7') = 1 where the noise vari- -1 1
ance is set at? = 1.0.

The performance of the iterative algorithm given in
Section 5 is illustrated in Figs.1,2 for constraints
a = 3.0 andc® = 2.0, initial valueg, = 0.01 and i
Q. = (1,007(1,0), A9 = 1.0, ag = 0.5, 79 = 5.0,
a = 0.06. The corresponding plots far = 3.0 and o
¢ = 3.0 are shown in Figs.3,4. It can be seen thar~™*|
the input variances attain their constraint values. It it
worthy to notice that the condition (23) is fulfilled for
both values of constrain. The plots of signals for % 5 100 150 200 250 200
a = 3.0 ande¢? = 3.0 are shown in Fig.5, where one

can see that the control signal attains sometimes its  Figure 1: Plots of feedback gairfs, f2; ¢ = 2.0
constraint.
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7 CONCLUSIONS Al | | | | | ]

The algorithm solving the amplitude and variance- _°¢f ]
constrained LQG control problem is given for plant
described by ARMAX model. For unstable open-
loop systems there is a lower bound of variance con | ‘ ‘ ‘ ‘ ‘
straint which can be imposed on the control signal tc  ° % 100 150 200 %0 300
preserve closed-loop stability, however imposing hart

amplitude constraint is not allowable. 28
For the self-tuning control implementation the esti- 2s

matesF, g, k., can be easily obtained from on- 2.

0.4 4

. .=t 2
line estimation of the ARMAX model parameters ~,,
Ay, .- aanaabla R abnbycla -+ Cnc-

2
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Figure 3: Plots of feedback gairfs, f2; ¢* = 3.0
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Figure 4: Plots of the weight”’ and variance2; ¢* = 3.0
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Figure 5: Plots of signals fa”’ = 3.0 anda = 3.0



