
A Tiny Overview of Cfengine:
Convergent Maintenance Agent

Mark Burgess

Oslo University College, Norway

Abstract. Cfengine is a widely used software tool with an on-going research
project, looking at distributed system administration. System administration deals
with the setup, configuration and maintenance of computing devices in a network,
a task where it is natural to apply methods of automation. Since its inception in
1993, the cfengine tool-set has been adopted by a broad range of users from small
businesses to huge organizations[1]. It is currently running on close to a million
nodes around the world.

1 Introduction

Cfengine falls into a class of approaches to system administration which is called
policy-based configuration management [2]. Instead of providing detailed imperative
programs for software agents to follow, policy based management is about painting the
broad strokes, or placing limits on the behaviour of self-adapting agents. A cfengine
agent has expert knowledge and a set of tools to configure and repair systems according
to a declared policy.

Cfengine’s task is to configure the files and processes running on networked com-
puters, e.g. Unix or Windows workstations.

– Policy (P ) is a description of intended host configuration. It comprises a partially
ordered list of operations or tasks for an agent to check.

– Operators(Ô) or primitive skills/actionsare the commands that carry out mainte-
nance checks and repairs. They are the basic sentences of a cfengine program. They
describewhat is to be constrained.

– Classesare a way of slicing up and mapping out the complex environment into dis-
crete (‘digital’) regions that can then be referred to by a symbol or name. They are
formally constraints on the degrees of freedom available in the system parameter
space. They are an integral part of specifying rules. They describewheresomething
is to be constrained.

– A cfenginestateis a fuzzy region within the total system parameter space. It is de-
fined formally with symbolsclassesthat define the environment in which a policy
rule lives and by the specificity of the policy rules themselves with respect to the in-
ternal characteristics of the operators (e.g. file permissions, process characteristics).
States have the form:(address,constraint) = (class,values)

Burgess M. (2005).
A Tiny Overview of Cfengine: Convergent Maintenance Agent.
In Proceedings of the 1st International Workshop on Multi-Agent Robotic Systems, pages 183-188
DOI: 10.5220/0001159201830188
Copyright c© SciTePress



Rather than assuming that transitions between states of itsmodel occur only at
the instigation of an operator, or at at the behest of a protocol, cfengine imagines that
changes of state occur unpredictably at any time, as part of the environment to be dis-
covered[3]. Cfengine holds to a set of principles, referredto as theimmunity model[4],
for seeking correctness of configuration. These embody the following features:

– Centralized policy-based specification, using an operating system independent lan-
guage.

– Distributed agent-based action; each host agent is responsible for its own mainte-
nance.

– Convergent semantics encourage every transaction to bringthe system closer to an
‘ideal’ average-state, like a ball rolling into a potentialwell.

– Once the system has converged, action by the agent desists.

A ‘healthy state’ is defined by reference to a local policy. When a system com-
plies with policy, it is healthy; when it deviates, it is sick. Cfengine makes this process
of ‘maintenance’ into an error-correction channel for messages belonging to a fuzzy
alphabet [5], where error-correction is meant in the sense of Shannon [6].

The main components of cfengine are:

– A central repository of policy files, which is accessible to every host in a domain.
– A declarative policy interpreter (cfengine is not an imperative language but has

many features akin to Prolog [7]).
– An active agent which executes intermittently on each host in a domain.
– A secure server which can assist with peer-level file sharing, and remote invocation,

if desired.
– A passive information-gathering agent which runs on each host, assisting in the

classification of host state over persistent times.

2 Classes, Environment and States

Setting configuration policy for distributed software and hardware is a broad challenge,
which must be addressed both at the detailed level, and at themore abstract enterprise
level. Cfengine is deployed throughout an environment andclassifiesits view of the
world into overlapping sets. Those tasks which overlap witha particular agent’s world
view are performed by the agent.

A class based decision structure is possible because each host knows its own name,
the type of operating system it is running and can determine whether it belongs to
certain groups or not. Each host which runs a cfengine agent therefore builds up a list
of its own attributes (called the classes to which the host belongs). Some examples
include:

1. The identity of a machine, including hostname, address, network.
2. The operating system and architecture of the host.
3. An abstract user-defined group to which the host belongs.
4. The result of any proposition about the system.
5. A time or date.



6. Logical combinations of any of the above.

The environment is large and complex and we cannot describe it in precise terms,
so cfengine classifies it into coarse abstract properties that are suitable for management
purposes. The classifiers form a patchwork covering of the environment.

Given that the agent, running on a host, can determine the class attributes for that en-
vironment, it can now pick out what guidelines it needs from aglobally specified policy,
since each policy task is also labelled with the classes to which it applies. This policy
predicates the agent’s application of skills according to broad criteria, encompassing
distributed collaborations.

A command or action is only executed if a given host is in the same class as the
policy action in the configuration program. There is no need for other formal decision
structures, it is enough to label each statement with classes. For example:

linux:: linux-actions
solaris:: solaris-actions
More complex combinations can perform an arbitrary covering of a distributed system
[8], e.g.

AllServers.Hr22.!exception host::

actions

whereAllServers is an abstract group, andexception host is a host which is
to be excluded from the rest. Classes thus form any number of overlapping sets, which
cover the coordinate space of the distributed system(h, c, t), for different hostsh, with
software componentsc, over timet. Classes sometimes become active in response to
situations which conflict with policy.

The inherent unknowability of the host environment means that cfengine does not
operate with any single notion of state; it has effectively several template definitions.
Administrators do not use the same mental model to describe network arrival processes
as they do the permissions of files, even though the essentialnature of maintenance is
the same.

A state is defined by policy. The specification of a policy ruleis like the specification
of a coordinate system (a scale of measurement) that is used to examine the compiance
of the system. The full policy is a patchwork of such rules, some of which overlap. A
cfengine state does not appear as a digital string, but rather as a set ‘language’ classes[9],
often represented in the form of a number of regular expressions, that place bounds on

– Characterizations of the configuration of operating systemobjects (cfagent digital
comparisons of fuzzy sets).

– Numerical counts of environmental observations (cfenvd counts or values with real-
valued averages).

– The frequency of execution of closed actions (cfagent locking).

3 Policy and Convergence

The view of policy taken in ref. [3] is that of a series of instructions that summarizes
theexpectedbehaviour. The precise behaviour is not enforcable, so there is no sense in
trying to specify it at each computational timestep.



This is where the split between system and environment has a fundamental con-
ceptual bearing on our description of it. There are two kindsof normality that pertain
to:

– Properties that we feel confident in deciding for ourselves (permissions of files,
processes etc). These are decided and enforced. Deviationsfrom these ‘digital’
specifications can be repaired or warned about directly by Shannon-like error cor-
rection.

– Properties that are controlled by the environment and must be learned (number of
users logged in, the level of web requests). These have fluctuating values but might
develop stable averages over time. These cannot normally be‘corrected’ but they
can be regulated over time (again this agrees with the maintenance theorem’s view
of average specification over time).

Cfengine deals with these two different realms differently: the former by direct lan-
guage specification and the latter by machine learning and byclassifying (digitizing)
the arrival process.

The Shannon communication model of the noisy channel has been used to provide
a simple picture of the maintenance process [5]. Maintenance is the implementation of
corrective actions, i.e. the analgoue of error correction in the Shannon picture. Main-
tenance appears more complex than Shannon error correction, however. What makes
the analogy valid is that Shannon’s conclusions are independent of a theory of observa-
tion and measurement. For alphabetic strings, the task of observation and correction is
trivial.

To view policy as digital, one uses the computer science ideaof a language [9]. One
creates a one-to-one mapping between the basic operations of cfengine and a discrete
symbol alphabet. e.g.

A -> ‘‘file mode=0644’’
B -> ‘‘file mode=0645’’

C -> ‘‘process email running’’ Since policy is finite, in practice, this is
denumerable. In operator language, the above action might be written:

Ôfile(name,mode, owner) (1)

The transmission medium in this process is time itself. We regard the system as being
propagated from its current location to exactly the same place, over time. In other words,
the time development of the system is just the transmission of the system into the future
over no distance.

Cfengine introduced the notion of ‘convergence’ into system administration. This
was orginially only implicit in the early work, but was namedexplicitly in the Computer
Immunology essay in [10] and was immediately taken up by Couch et al [7] and formed
the basis of the configuration management workshops. This concept was quickly under-
stood to be important.

A key part of avoiding uncontrolled behaviour are cfengine’s transaction locks [11].
These were designed to ensure three things:

– Consistency of the outcome of atomic operations, i.e. avoidcontention due to con-
current execution of multiple agents.



– To limit the frequency with which operations could be repeated.
– To ensure that operations would not be able to hang indefinitely.

Behind these, is the assumption that new cfengine agents will be spawned frequently to
check for maintenance operations.

Cfengine uses the idea ofconvergenceto an ideal state. This means that, no matter
how many times cfengine is run, its state will only get closerto the ideal configuration.
This is a stronger condition thanidempotenceas in Couch’s interpretation [12, 13].
Since idempotence requires onlŷO2 = Ô, while convergence is relative to a specific
policy stateq0 [14]:

Ôq = q0

Ôq0 = q0. (2)

The point of convergence over multiple runs is that multipleorthogonal, convergent
operations will always lead to the correct configuration, nomatter which part of the
configuration is incorrect, or in what order things occur. Complex operations might not
complete within a single scheduled iteration, if external factors intervene in an untimely
manner; but they will always converge eventually. This is proven in ref.[4].

If two operations areorthogonal, it means that they can be applied independently
of order, without affecting the final state of the system. Theconstruction of a consistent
policy compliant configuration has been subject to intense debate[4, 15, 13].

A little-discussed but relevant part of the ordering problem is the matter of cfengine’s
adaptive transaction locking [11]. The transaction locks allow cfengine processes to
‘flow through’ one another and avoid going into infinite regression and also prevents
agents from repeating themselves too often, or getting stuck on a problem. If an agent
gets stuck, another one will destroy it and take over.

4 Anomalies

In cfengine, an extra daemon (cfenvd) is used to collect statistical data about the recent
history of each host (approximately the past two months), and classify it in a way that
can be utilized by the cfengine agent. The agent learns. Dataare gradually aged so
that older values become less important [16]. The daemon automatically adapts to the
changing conditions, but has a built-in inertia which prevents anomalous signals from
being given too much credence. Persistent changes will gradually change the ‘normal
state’ of the host over an interval of a few weeks. Unlike somesystems, cfengine’s
training period never ends. The challenge of future anomalydetection is the find a
stochastic anomaly language for a reactive agent policy.

References

1. Burgess, M.: Evaluation of cfengine’s immunity model of system maintenance. Proceed-
ings of the 2nd international system administration and networking conference (SANE2000)
(2000)



2. Sloman, M., Moffet, J.: Policy hierarchies for distributed systems management. Journal of
Network and System Management11 (1993) 1404

3. Burgess, M.: On the theory of system administration. Science of Computer Programming
49 (2003) 1

4. Burgess, M.: Cfengine’s immunity model of evolving configuration management. Science
of Computer Programming51 (2004) 197

5. Burgess, M.: System administration as communication over a noisy channel. Proceedings of
the 3nd international system administration and networking conference (SANE2002) (2002)
36

6. Shannon, C., Weaver, W.: The mathematical theory of communication. University of Illinois
Press, Urbana (1949)

7. Couch, A., Gilfix, M.: It’s elementary, dear watson: Applying logic programming to conver-
gent system management processes. Proceedings of the Thirteenth Systems Administration
Conference (LISA XIII) (USENIX Association: Berkeley, CA) (1999) 123

8. Comer, D., Peterson, L.: Understanding naming in distributed systems. Distributed Comput-
ing 3 (1989) 51

9. Lewis, H., Papadimitriou, C.: Elements of the Theory of Computation, Second edition.
Prentice Hall, New York (1997)

10. Burgess, M.: Computer immunology. Proceedings of the Twelth Systems Administration
Conference (LISA XII) (USENIX Association: Berkeley, CA) (1998) 283

11. Burgess, M., Skipitaris, D.: Adaptive locks for frequently scheduled tasks with unpre-
dictable runtimes. Proceedings of the Eleventh Systems Administration Conference (LISA
XI) (USENIX Association: Berkeley, CA) (1997) 113

12. Couch, A., Sun, Y.: On the algebraic structure of convergence.Submitted to DSOM 2003
(2003)

13. Couch, A., Sun, Y.: On observed reproducibility in network configuration management.
Science of Computer Programming(to appear) (1994)

14. Burgess, M.: Analytical Network and System Administration — Managing Human-
Computer Systems. J. Wiley & Sons, Chichester (2004)

15. Traugott, S.: Why order matters: Turing equivalence in automated systems administration.
Proceedings of the Sixteenth Systems Administration Conference (LISA XVI) (USENIX
Association: Berkeley, CA) (2002) 99

16. Burgess, M.: Two dimensional time-series for anomaly detection and regulation in adaptive
systems. IFIP/IEEE 13th International Workshop on Distributed Systems: Operations and
Management (DSOM 2002) (2002) 169


