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Abstract: An efficient algorithm is derived for the recursive computation of the filtering and all types of linear least-
square prediction estimates (fixed-point, fixed-interval, and fixed-lead predictors) of a nonstationary signal
vector. It is assumed that the signal is observed in the presence of an additive white noise which can be
correlated with the signal. The methodology employed only requires that the covariance functions involved
are factorizable kernels and then it is applicable without the assumption that the signal verifies a state-space
model.

1 INTRODUCTION

The estimation of a signal in the presence of additive
white noise has been found to be among the central
problems of statistical communication theory.

Application of the linear least mean-square error
criterion leads to a linear integral equation, called
Wiener-Hopf equation, whose solution is the impulse
response of the optimal estimate. Although the lin-
ear least mean-square estimation problem is com-
pletely characterized by the solution to the Wiener-
Hopf equation, a great effort has been made in the
searching of efficient procedures for the computation
of the desired estimator. Roughly speaking two ap-
proaches have been applied.

A first via of solution consists in using integral-
equations approaches which provide the solution to
the Wiener-Hopf integral equation for the impulse re-
sponse function of the optimal estimator, from the
knowledge of the covariance functions of the sig-
nal and noise [see, e.g. (Van Trees, 1968), (Kailath
et al., 2000), (Fortmann and Anderson, 1973), (Gard-
ner, 1974), (Gardner, 1975), (Navarro-Moreno et al.,
2003)]. This technique is closely connected to series
representation for stochastic processes and, in gen-
eral, a series representation for the optimal estimate
is provided instead of a recursive computational algo-
rithm. The use of series representation for stochastic
processes only allow to derive recursive procedures
for the computation of suboptimum estimates.

On the other hand, a conventional approach to esti-
mate a signal observed through a linear mechanism
lies in imposing structural assumptions on the co-
variance functions involved. In this framework, the
most representative algorithm is the Kalman-Bucy fil-
ter [see. e.g., (Kalman and Bucy, 1961), (Gelb, 1989)]
which requires that the signal verifies a state-space
model. However, although the Kalman-Bucy filter
has been widely applied, there are a great number
of physical phenomena that cannot be modelled by a
state-space system. For problems with covariance in-
formation, linear least mean-square estimation algo-
rithms have been designed under less restrictive struc-
tural conditions on the processes involved [(Sugisaka,
1983), (Ferńandez-Alcaĺa et al., 2005)]. Specifically,
the only hypothesis imposed is that the covariance
functions of the signal and noise are expressed in the
factorized functional form.

Therefore, under the assumption that the covari-
ance functions of the signal and noise are factoriz-
able kernels, we aim to derived a recursive solution
to the linear least-square estimation problem involv-
ing correlation between the signal and the observation
noise. Specifically, using covariance information, an
imbedding method is employed in order to design re-
cursive algorithms for the filter and all kinds of pre-
dictors (fixed-point, fixed-interval, and fixed-lead pre-
dictors). Moreover, recursive formulas are designed
for the error covariances associated with the above es-
timates.
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Then, the paper is structured as follows. In the
next section, a general formulation of the linear least-
squares filtering and prediction problem is consid-
ered. Finally, in Section 3, the recursive algorithms
for the filter and all types of predictors as well as their
error covariances are derived.

2 PROBLEM STATEMENT

Let {x(t), 0 ≤ t < ∞} be a zero-mean signal vector
of dimensionn which is observed through the follow-
ing equation:

y(t) = x(t) + v(t), 0 ≤ t < ∞

wherey(t) represents then-dimensional observation
vector andv(t) is a centered white observation noise
with covariance functionE[v(t)v′(s)] = rδ(t − s),
with r a positive definite covariance matrix of dimen-
sionn × n, and correlated with the signal.

We assume that the autocovariance function of the
signal and the cross-covariance function between the
signal and the observation noise are factorizable ker-
nels which can be expressed in the following form:

Rx(t, s) =

{

A(t)B′(s), 0 ≤ s ≤ t
B(t)A′(s), 0 ≤ t ≤ s

Rxv(t, s) =

{

α(t)β′(s), 0 ≤ s ≤ t
γ(t)λ′(s), 0 ≤ t ≤ s

(1)

where A(t), B(t), α(t), β(t), γ(t), and λ(t) are
bounded matrices of dimensionsn × k, n × k, n × l,
n × l, n × l′, andn × l′, respectively.

We consider the problem of finding the linear least
mean-square error estimator,x̂(t/T ), with t ≥ T , of
the signalx(t) based on the observations{y(s), s ∈
[0, T ]}. It is known that such an estimate is the or-
thogonal projection ofx(t) ontoH(y, t) (the Hilbert
space spanned by the process{y(s), s ∈ [0, T ]}).
Hence,x̂(t/T ) can be expressed as a linear function
of all the observed data of the form

x̂(t/T ) =

∫ T

0

h(t, s, T )y(s)ds, 0 ≤ s ≤ T ≤ t

(2)
As a consequence of the orthogonal projection the-

orem, we obtain that the impulse response function
h(t, s, T ) must satisfy the Wiener-Hopf equation

Rxy(t, s) =

∫ T

0

h(t, σ, T )R(σ, s)dσ + h(t, s, T )r

(3)
for 0 ≤ s ≤ T ≤ t, whereRxy(t, s) = Rx(t, s) +
Rxv(t, s), and R(t, s) = Rx(t, s) + Rxv(t, s) +
Rvx(t, s).

From (1), it is easy to check thatRxy(t, s) and
R(t, s) can be written as follows:

Rxy(t, s) =

{

F (t)Γ′(s), 0 ≤ s ≤ t
G(t)Λ′(s), 0 ≤ t ≤ s

R(t, s) =

{

Λ(t)Γ′(s), 0 ≤ s ≤ t
Γ(t)Λ′(s), 0 ≤ t ≤ s

(4)

where F (t) = [A(t), α(t), 0n×l′ ], G(t) =
[B(t), 0n×l, γ(t)], Λ(t) = [A(t), α(t), λ(t)], and
Γ(t) = [B(t), β(t), γ(t)] are matrices of dimensions
n × m with m = k + l + l′, and0p×q denotes the
(p × q)-dimensional matrix whose elements are zero.

Note that, we can expressed the optimal linear fil-
ter and all kinds of predictors through the equations
(2) and (3). Specifically, by consideringT = t
we have the filtering estimatêx(t/t), the fixed-point
predictor x̂(td/T ) is derived by taking a fixed in-
stant t = td > T , for the fixed-interval predictor,
we consider a fixed observation interval[0, Td], with
Td < t, and finally the fixed-lead prediction estimate
x̂(T + d/T ), is given by (2) and (3) witht = T + d,
for anyd > 0.

Likewise, the error covariances associated with the
above estimates can be defined as

P (t/T ) = E[(x(t)− x̂(t/T ))(x(t)− x̂(t/T ))′] (5)

with a suitable estimation instant,t, and a specific ob-
servation interval[0, T ].

Therefore, in the next section, the Wiener-Hopf
equation (3) will be used, with the aid of invariant
imbedding, in order to design recursive procedures for
the filter and all kinds of predictors of the signal vec-
tor x(t) as well as their associated error covariances.
We must note that the only hypothesis assumed is that
the covariance functions involved are factorizable ker-
nels of the form (1).

3 RECURSIVE LINEAR
ESTIMATION ALGORITHMS

Under the hypotheses established in Section 2, an ef-
ficient recursive algorithm for the linear least-square
filter, and the fixed-point, fixed-interval and fixed-lead
prediction estimates of the signal and their associated
error covariance functions is presented in the follow-
ing theorem.

Theorem 1 The filter and the fixed-point, fixed-
interval and fixed-lead prediction estimates of the sig-
nal x(t) are recursively computed as follows:

x̂(t/t) =F (t)L(t)

x̂(td/T ) =F (td)L(T )

x̂(t/Td) =F (t)L(Td)

x̂(T + d/T ) =F (T + d)L(T )

(6)
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where them-dimensional vectorL(T ) obeys the dif-
ferential equation

∂

∂T
L(T ) =J(T ) [y(T ) − Λ(T )L(T )]

L(0) =0m

(7)

with0m them-dimensional vector with zero elements,
and whereJ(T ) is given by the expression

J(T ) = [Γ′(T ) − Q(T )Λ′(T )] r−1 (8)

with Q(T ) satisfying the differential equation

∂

∂T
Q(T ) =J(T ) [Γ(T ) − Λ(T )Q(T )]

Q(0) =0m×m

(9)

Moreover, the optimal linear estimation error co-
variance functions associated with the filtering esti-
mate,P (t/t), the fixed-point predictor,P (td/T ), the
fixed-interval predictor,P (t/Td), and the fixed-lead
predictor,P (T + d/T ), are formulated as follows:

P (t/t) =Rx(t, t) − F (t)Q(t)F ′(t)

P (td/T ) =Rx(td, td) − F (td)Q(T )F ′(td)

P (t/Td) =Rx(t, t) − F (t)Q(Td)F
′(t)

P (T + d/T ) =Rx(T + d, T + d)

− F (T + d)Q(T )F ′(T + d)
(10)

proof 1 From (4), the Wiener-Hopf equation(3) can
be rewritten as

h(t, s, T )r = F (t)Γ′(s) −

∫ T

0

h(t, σ, T )R(σ, s)dσ

Now, we introduce an auxiliary functionJ(s, T )
satisfying the equation

J(s, T )r = Γ′(s) −

∫ T

0

J(σ, T )R(σ, s)dσ (11)

Then, it is obvious that the impulse response func-
tion is given by the expression

h(t, s, T ) = F (t)J(s, T ) (12)

Next, differentiating(11) with respect toT , we ob-
tain thatJ(s, T ) obeys the following partial differen-
tial equation:

∂

∂T
J(s, T ) = −J(T )Λ(T )J(s, T ) (13)

whereJ(T ) = J(T, T ).
On the other hand, from(4) and (11), it is easy to

check that

J(T )r = Γ′(T ) −

∫ T

0

J(σ, T )Γ(σ)dσΛ′(T )

Then, the definition of a functionQ(T ) as

Q(T ) =

∫ T

0

J(σ, T )Γ(σ)dσ (14)

leads to the equation(8).
The equation(9) is obtained by differentiating(14)

with respect toT and using(13) in the resultant equa-
tion.

Next, introducing a new auxiliary function

L(T ) =

∫ T

0

J(σ, T )y(σ)dσ (15)

and substituting(12) in (2), we have that

x̂(t/T ) = F (t)L(T ), ∀t ≥ T (16)

Then, by considering a suitable estimation instant,
t, and a specific observation interval[0, T ] in (16),
the filter and all kinds of predictors are given by the
expressions(6).

Moreover, differentiating(15)with respect toT and
considering(13) in the resultant equation, it is easy to
check that the above functionL(T ) satisfies the differ-
ential equation(7).

Finally, in order to derived the expressions(10) for
the error covariances associated with the above es-
timates, we remark that, from the orthogonal projec-
tion lemma, the error covariance function(5), can be
rewritten as

P (t/T ) = Rx(t, t) − E[x̂(t/T )x̂′(t/T )]

Then, substituting(16) in the above equation and
using(11), it is easy to check that

P (t/T ) = Rx(t, t) − F (t)Q(T )F ′(t)

As consequence, the expressions given in(10) can
be obtained.
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