
A FAST TABU SEARCH ALGORITHM FOR FLOW SHOP
PROBLEM WITH BLOCKING

Jozef Grabowski, Jaroslaw Pempera
Wroclaw University of Technology, Institute of Engineering Cybernetics

Janiszewskiego 11-17, 50-372 Wroclaw, Poland

Keywords: Flow-shop scheduling; Blocking; Makespan; Local search; Tabu Search.

Abstract: This paper develops a fast tabu search algorithm to minimize makespan in a flow shop problem with blocking.
We present a fast heuristic algorithm based on tabu search approach. In the algorithm the multimoves are used
that consist in performing several moves simultaneously in a single iteration of algorithm and guide the search
process to more promising areas of the solutions space, where good solutions can be found. It allow us to
accelerate the convergence of the algorithm. Besides, in the algorithm a dynamic tabu list is used that assists
additionally to avoid being trapped at a local optimum. The proposed algorithm is empirically evaluated and
found to be relatively more effective in finding better solutions in a much shorter time.

1 INTRODUCTION

This paper considers the blocking flow shop problem
to minimize makespan. The classical flow shop prob-
lem disregards the behavior of the jobs between two
consecutive operations, i.e. it is assumed that inter-
mediate buffers have infinite capacity and that a job
can be stored for unlimited amount of time.

In a flow shop problem with blocking, there are
no buffers between the machines and a job, having
completed processing on a machine, remains on this
machine andblocksit, until the next machine down-
stream becomes available for processing.

The flow shop problem with blocking has been
studied by many researchers including (Abadi et al.,
2000), (Caraffa et al., 2001), (Grabowski and Pem-
pera, 2000), (Hall and Sriskandarajah, 1996), (Leis-
tein, 1990), (McCormick et al., 1989), (Nowicki,
1999), (Peng et al., 2004), (Reddi and Ramamoor-
thy, 1972), (Ronconi, 2004), (Ronconi and Armen-
tano, 2001), (Smutnicki, 1983).

In this paper, we propose a new heuristic algorithm
based on tabu search technique. The paper is orga-
nized as follows. In Section 2, the problem is defined
and formulated. Section 3 presents the description
of algorithm, moves, neighbourhood structure, search
process and dynamic tabu list. Computational results
are shown in Section 4 and compared with those taken
from the literature.

2 PROBLEM DESCRIPTION AND
PRELIMINARIES

The flow-shop problem with blocking can be formu-
lated as follows.
PROBLEM: Each of n jobs from the setJ =
{1, 2, . . . , n} has to be processed onm machines
1, 2, . . . ,m in that order, having no intermediate
buffers. Jobj ∈ J , consists of a sequence ofm
operationsOj1, Oj2, . . . , Ojm; operationOjk corre-
sponds to the processing of jobj on machinek during
an uninterrupted processing timepjk. Since the flow
shop has no intermediate buffers, a jobj, having com-
pleted processing of the operationOjk, can not leave
the machinek, until the next machinek + 1 is free,
k = 1, 2, . . . ,m−1, j ∈ J . If the machinek+1 is not
free, then jobj is blocked on the machinek. We want
to find a schedule such that the processing order of
jobs is the same on each machine and the maximum
completion time is minimal.

Each schedule of jobs can be represented by per-
mutationπ = (π(1), . . . , π(n)) on setJ . Let Π de-
note the set of all such permutations. We wish to find
such permutationπ∗ ∈ Π, that

Cmax(π
∗) = min

π∈Π
Cmax(π),

whereCmax(π) is the time required to complete all
jobs on the machines in the processing order given

71
Grabowski J. and Pempera J. (2005).
A FAST TABU SEARCH ALGORITHM FOR FLOW SHOP PROBLEM WITH BLOCKING.
In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics, pages 71-76
DOI: 10.5220/0001160900710076
Copyright c© SciTePress



by π. It is known from literature (Ronconi, 2004)
that Cmax(π) = Dπ(n)m, where the departure time
Dπ(j)k of job π(j) on machinek can be found using
the following recursive expressions:

Dπ(1)0 = 0, k = 1, . . . ,m − 1,

Dπ(1)k =
∑k

l=1 pπ(1)l, k = 1, . . . ,m − 1,

Dπ(j)0 = Dπ(j−1),1, j = 2, . . . , n,

Dπ(j)k = max{Dπ(j)k−1 + pπ(j)k,Dπ(j−1),k+1},
j = 2, . . . , n, k = 1, . . . ,m − 1,

Dπ(j)m = Dπ(j),m−1 + pπ(j)m, j = 1, . . . , n.

The two-machine flow shop problem with block-
ing can be solved inO(nlogn) time (Reddi and Ra-
mamoorthy, 1972) using an improved implementation
by (Gilmore et al., 1985) of the algorithm of (Gilmore
and Gomory, 1964). Form > 2, the problem is un-
fortunately NP-hard.

It is useful to present the considered problem by
using a graph (Grabowski and Pempera, 2000). For
the given processing orderπ, we create the graph
G(π) = (N,R∪F 0(π)∪F−(π)) with a set of nodes
N and a set of arcsR ∪ F 0(π) ∪ F−(π), where:

• N = {1, ..., n}×{1, ...,m}, where node(j, k) rep-
resents thek-th operation of jobπ(j). The weight
of node(j, k) ∈ N is given by the processing time
pπ(j)k.

• R =
n⋃

j=1

m−1⋃
k=1

{((j, k), (j, k + 1))}. Thus,R con-

tains arcs connecting consecutive operations of the
same job.

• F 0(π) =
n−1⋃
j=1

m⋃
k=1

{((π(j), k), (π(j+1), k))}. Arcs

from F 0(π) connect jobs to be processed on the
machines in the processing order given byπ. Each
arc ofF 0(π) has weight zero.

• F−(π) =
n−1⋃
j=1

m−1⋃
k=1

{((π(j), k + 1), (π(j + 1), k)}.

Each arc((π(j), k+1), (π(j+1), k)) ∈ F−(π) has
weight minuspπ(j),k+1 and ensures the blocking
of job π(j + 1) (i.e. operationOπ(j+1),k) on the
machinek, if the machinek + 1 is not free.

The makespanCmax(π) of the flow-shop problem
with blocking is equal to the length of the longest
(critical) path from node(1, 1) to (n,m) in G(π).

Each path from(1, 1) to (n,m) can be repre-
sented by a sequence of nodes, and let denote a crit-
ical path inG(π) by u = (u1, u2, . . . , uw), where
ui = (ji, ki) ∈ N , 1 ≤ i ≤ w andw is the num-
ber of nodes in this path. Obviously, it has to be

u1 = (j1, k1) = (1, 1), anduw = (jw, kw) = (n,m).
The critical path can naturally be decomposed into
several specific subpaths and each of them contains
the nodes linked by the same type of arcs, i.e. all arcs
of the subpath belong either toF 0(π) or toF−(π).

The first type of subpaths is determined by a maxi-
mal sequence(ug, ..., uh) = ((jg, kg), . . . , (jh, kh)))
of u such thatkg = kg+1 = . . . = kh and
((ji, ki), (ji+1, ki+1)) ∈ F 0(π) for all i = g, . . . , h−
1, g < h. Each such subpath determines the sequence
of jobs

Bgh = (jg, jg+1, . . . , jh−1, jh),

which is called theblock of jobs in π. Jobsjg and
jh in Bgh are thefirst and last ones, respectively. A
block corresponds to a sequence of jobs (operations)
processed on machinekg without inserted idle time.

Next, we define theinternal blockof Bgh as the
subsequence

B∗
gh = Bgh − {jg, jh}.

The second type of subpaths is defined by a max-
imal sequence(us, ..., ut) = ((js, ks), . . . , (jt, kt)))
of u such that((ji, ki), (ji+1, ki+1)) ∈ F−(π) for all
i = s, . . . , t−1, s < t. Each such subpath determines
the sequence of jobs

Ast = (js, js+1, . . . , jt−1, jt),

which is called theantiblockof jobs inπ. Similarly
to in Bgh, jobs js and jt in Ast are thefirst and
last ones, respectively. An antiblock corresponds to
blocked jobs. Note that operationOπ(ji)ki

of jobjπ(ji)

is processed on machineki with ki > ki+1 = ki − 1,
i = s, . . . , t − 1. Similarly to inBgh, now we define
the internal antiblockof Ast as the subsequence

A∗
st = Ast − {js, jt}.

The critical pathu can contain many different blocks
and antiblocks, and letlB andlA denote, respectively,
the numbers of blocks and antiblocks inu. Each of
blocks (or antiblocks) can be characterized by the pair
(gi, hi), i = 1, . . . , lB (or (si, ti), i = 1, . . . , lA), and
let GH = {(gi, hi) | i = 1, . . . , lB} (or ST =
{(si, ti) | i = 1, . . . , lA}) be the set of the pairs de-
noting all blocks (or antiblocks) inu.
Property 1 (Grabowski and Pempera, 2000).

For any blockBgh (or antiblockAst) in π, let α be
a processing order obtained fromπ by an interchange
of jobs from the internal blockB∗

gh (or A∗
st). Then we

haveCmax(α) ≥ Cmax(π).

Immediately from Property 1, it results the follow-
ing Theorem

Theorem 1 .
Let π ∈ Π be any permutation with blocksBgh

and antiblocksAst. If the permutationβ has been
obtained fromπ by an interchange of jobs that
Cmax(β) < Cmax(π), then inβ

ICINCO 2005 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

72



(i) at least one jobj ∈ Bgh (or j ∈ Ast) precedes job
jg (or js), for some(g, h) ∈ GH (or (s, t) ∈ ST ),
or

(ii) at least one jobj ∈ Bgh (or j ∈ Ast) succeeds job
jh (or jt) , for some(g, h) ∈ GH (or (s, t) ∈ ST ).

Note that Theorem 1 provides the necessary con-
dition to obtain a permutationβ from π such that
Cmax(β) < Cmax(π).

3 ALGORITHM TABU SEARCH
WITH MULTIMOVE (TS+M)

Currently, tabu search (TS) approach, see (Glover,
1989) and (Glover, 1990), is one of the most effective
methods using local search techniques to find near-
optimal solutions of many combinatorial intractable
optimization problems, such as the vast majority of
scheduling problems. This technique aims to guide
the search by exploring the solution space of a prob-
lem beyond local optimality. Since TS has not been
applied to our problem, we propose a TS approach.
The main idea of this method involves starting from
an initial basic job permutation and searching through
its neighbourhood, a set of permutations generated
by the moves, for a permutation with the lowest
makespan. The search then is repeated starting from
the best permutation, as a new basic permutation, and
the process is continued. One of the main ideas of
TS is the use of a tabu list to avoid cycling, overcom-
ing local optimum, and to guide the search process
to the solutions regions which have not been exam-
ined. The tabu list records the performed moves that,
for a chosen span of time, havetabustatus and cannot
be applied currently (they are forbidden); that is they
determine forbidden permutations in the currently an-
alyzed neighbourhood. Usually, the algorithm TS ter-
minates when it has performed a given number of iter-
ations (Maxiter), time has run out, the neighbourhood
is empty, a permutation with a satisfying makespan
has been found, etc.

3.1 Moves and neighbourhood

One of the main components of a local search algo-
rithm is the definition of the move set that creates a
neighbourhood. A move changes the location of some
jobs in a given permutation. The intuition following
from Theorem 1 suggests that the ”insert” type move
should be the most proper one for the problem con-
sidered. Letv = (π(x), π(y)) be a pair of jobs in a
permutationπ, x, y ∈ {1, 2, ..., n}, x 6= y. The pair
v = (π(x), π(y)) defines a move inπ. This move
consists in removing jobπ(x) from its original posi-
tion x, and next inserting it in the position immedi-

ately after jobπ(y) (or beforeπ(y)) in π if x < y (or
x > y).

The neighbourhood ofπ consists of permutations
πv obtained by moves from a given setM , and de-
noted asN (M,π) = {πv | v ∈ M}. The proper
selection ofM is very important to construct an ef-
fective algorithm.

For each jobj we consider at most one move to the
right and at most one to the left. Moves are associ-
ated with blocks and antibloks. Let us take the block
Bgh = (jg, jg+1, . . . , jh−1, jh)) in π. Now we define
the sets ofcandidates

Ea
gh = {jg, jg+1, . . . , jh−1} = Bgh − {jh},

Eb
gh = {jg+1, . . . , jh−1, Jh)} = Bgh − {jg}.

Each setEa
gh (or Eb

gh) contains the jobs in blockBgh

of π that are candidates for being moved to a position
after (or before) all other jobs in this block.

For any blockBgh in π, we define the following set
of moves to the right

RBgh = {(j, jh) | j ∈ Ea
gh},

and the set to the left

LBgh = {(j, jg) | j ∈ Eb
gh}.

SetRBgh contains all moves of jobs ofEa
gh to the

right after the last jobjh of block Bgh. By anal-
ogy, setLBgh contains all moves of jobs ofEb

gh

to the left before the first jobjg of block Bgh. It
should be found that for each movev ∈ RBgh (or
v ∈ LBgh) , the necessary condition of Theorem 1 is
satisfied to obtain a permutationπv from π such that
Cmax(πv) < Cmax(π). As a consequence, in algo-
rithm, we will employ the set of moves

MB =
⋃

(g,h)∈GH

[RBgh ∪ LBgh],

The similar considerations can be provided for the
antiblocksAst, and we then obtain the set of moves

MA =
⋃

(s,t)∈ST

[RAst ∪ LAst].

Finally, in our TS+M, we propose the following set of
moves

M = MB ∪ MA,

which creates neighbourhoodN (M,π).
In order to accelerate the convergence of the algo-

rithms to good solutions, we propose to use themul-
timoves. A multimove consists ofseveralmoves that
are performedsimultaneouslyin a single iteration of
algorithm. The performances of the multimoves al-
low us to generate permutations that differ in various
significant ways from those obtained by performing a
single move and to carry the search process to hitherto

A FAST TABU SEARCH ALGORITHM FOR FLOW SHOP PROBLEM WITH BLOCKING

73



non-visited regions of the solution space. Further-
more, in our algorithm, the multimoves have the pur-
pose of guiding the search to visit the more promising
areas, where ”good solutions” can be found. In lo-
cal search algorithms, the use of multimoves can be
viewed as a way to apply a mixture of intensification
and diversification strategies in the search process.

In the following we present a method that will be
used in our TS algorithm to provide the multimoves.

For the blocksBgh, we consider the following sets
of moves

RB∗
gh = {(j, jh) | j ∈ B∗

gh},

LB∗
gh = {(j, jg) | j ∈ B∗

gh}.

SetRB∗
gh (orLB∗

gh) contains all moves that insert the
jobs from the internal blockB∗

gh after the last jobjh

(or before the first jobjg) of this block (see Section
Moves and neighbourhood).

Next, for the blockBgh, the ”best” movevR(gh) ∈
RB∗

gh andvL(gh) ∈ LB∗
gh are chosen (respectively):

Cmax(πvR(gh)
) = min

v∈RB∗

gh

Cmax(πv),

Cmax(πvL(gh)
) = min

v∈LB∗

gh
, v 6=vR(gh)

Cmax(πv),

and the following sets of moves are created

RB = {vR(gh) | (g, h) ∈ GH},

LB = {vL(gh) | (g, h) ∈ GH},

and

BB = RB ∪ LB = {v1, v2, ..., v2lB}.

Let

BB(−) = {v ∈ BB | Cmax(πv) < Cmax(π)} =

= {v1, v2, ..., vp}, p ≤ 2lB .

be the set of theprofitable movesof blocksBgh per-
forming of which generates permutationπv ”better”
thanπ.

The similar consideration can be provided for the
antiblocksAst, and we then obtain their the set of
profitable moves

BA(−) = {v ∈ BA | Cmax(πv) < Cmax(π)} =

= {v1, v2, ..., vq}, q ≤ 2lA.

The main idea of a multimove is to consider a search
which allows us several moves to be made in a sin-
gle iteration and carry the search to the more promis-
ing areas of solution space, where ”good solutions”
can be found. In our algorithm, the set of promising
moves can be defined as follows

BM (−) = BB(−) ∪ BA(−) = {v1, v2, ..., vz},

z ≤ 2(lB + lA).

From the definition ofBM (−) it results that each
move v ∈ BM (−) produces permutationπv ”bet-
ter” thanπ. Therefore, as amultimove, we took the
set BM (−). The use of this multimove consists in
performing all the moves fromBM (−) simultane-
ously, generating a permutation, denoted asπv, where
v = BM (−). To simplify, in the further consider-
ations, multimoveBM (−) will be denoted alterna-
tively by v.

3.2 Search process

TS+M starts from an initial basic permutationπ that
implies the neighbourhoodN(M,π). This neigh-
bourhood is searched in the following manner.

First, the ”best” movev∗ ∈ M that gener-
ates the permutationπv∗ ∈ N(M,π) with the
lowest makespan is chosen, i.e.Cmax(πv∗) =
minv∈M Cmax(πv). If Cmax(πv∗) < C∗ (whereC∗

is the best makespan found so far), then the movev∗

is selected for the search process. Otherwise, i.e. if
Cmax(πv∗) ≥ C∗, then the set ofunforbiddenmoves
(UF) that do not have the tabu status, is defined

UM = {v ∈ M | movev is UF}.

Next, the ”best” movev∗ ∈ UM that generates
the permutationπv∗ ∈ N(UM,π) with the lowest
makespan, i.e.Cmax(πv∗) = minv∈UM Cmax(πv),
is chosen for the search.

If the movev∗ is selected, then a pair of jobs cor-
responding to the movev∗ is added to the tabu list
(see next sectionTabu list and tabu status of movefor
details) and the resulting permutationπv∗ is created.
Next, this permutation becomes the new basic one,
i.e. π := πv∗ and algorithm restarts to next iteration.

We develop our algorithm tabu search by using
the multimoves in some specific situations.If permu-
tation πv is obtained by performing a multimovev,
then the next one is made whenPiter of the con-
secutive non-improving iterations will pass in TS+M.
In other words, the multimove is used periodically,
wherePiter is the number of the iterations between
the neighbouring ones.

If a multimove is performed, then a pair of jobs
corresponding to the movev∗ ∈ v with the smallest
value ofCmax(πv∗) is added to tabu listT . ThePiter
is a tuning parameter which is to be chosen experi-
mentally.

3.3 Tabu list and tabu status of move

In our algorithm we use the cyclic tabu list defined
as a finite list (set)T with lengthLengthT contain-
ing ordered pairs of jobs. The listT is a realiza-
tion of the short-term search memory. If a multi-
movev is performed on permutationπ, then, for the

ICINCO 2005 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

74



”best” movev∗ = (π(x), π(y)) ∈ v, the pair of jobs
(π(x), π(x+1)) if x < y, or the pair(π(x−1), π(x)))
if x > y, representing a precedence constraint, is
added toT . Each time before adding a new ele-
ment toT , we must remove the oldest one. With re-
spect to a permutationπ, a move(π(x), π(y)) ∈ M
is forbidden, i.e. it hastabu status, ifA(π(x)) ∩
{π(x + 1), π(x + 2), ..., π(y)} 6= ∅ if x < y, and
B(π(x))∩ {π(y), π(y + 1), ..., π(x− 1)} 6= ∅ other-
wise, where

A(j) = {i ∈ J | (j, i) ∈ T},

B(j) = {i ∈ J | (i, j) ∈ T}.

SetA(j) (or setB(j)) indicates which jobs are to be
processedafter (or before) job j with respect to the
current content of the tabu listT .

As mentioned above, our algorithm uses a tabu list
with dynamic length. This length is changed cycli-
cally, as the current iteration numberiter of TS+M
increases, using the “pick“ in order to avoid be-
ing trapped at a local optimum (see (Grabowski and
Wodecki, 2004) for details). This kind of tabu list can
be viewed as a specific disturbance and was employed
on that very fast tabu search algorithm proposed by
Grabowski and Wodecki (Grabowski and Wodecki,
2004), where it was successfully applied to the classi-
cal flow shop problem.

4 COMPUTATIONAL RESULTS

In this section we report the results of empirical tests
to evaluate the relative effectiveness of the proposed
tabu search algorithm. So far the best heuristic al-
gorithms for a permutation flow-shop problem with
blocking were presented in papers by (Abadi et al.,
2000), (Caraffa et al., 2001), (Leistein, 1990), (Mc-
Cormick et al., 1989), (Nowicki, 1999), (Ronconi,
2004). It is showed that the best heuristic algorithm
is that proposed by Nowicki (Nowicki, 1999), de-
noted here as TSN. Therefore, we compare our al-
gorithm TS+M with TSN which is also based on the
tabu search approach.

Both algorithms TS+M and TSN were coded in
C++, run on a PC with Pentium IV 1000MHz proces-
sor and tested on the benchmark instances provided
by (Taillard, 1993) for the classic permutation flow
shop, by considering all machines as the blocking
constraints are required. The benchmark set contains
120 particularly hard instances of 12 different sizes,
selected from a large number of randomly generated
problems. For each size (group)n × m: 20 × 5,
20× 10, 20× 20, 50× 5, 50× 10, 50× 20, 100× 5,
100× 10, 100× 20, 200× 10, 200× 20, 500× 20, a
sample of 10 instances was provided.

The algorithms based on the tabu search method,
needs an initial permutation, which can found by any

Table 1: Computational results

TSN TS+M
Maxiter 30000 1000 3000 30000

n × m APRI ACPU APRI ACPU APRI ACPU APRI ACPU

20× 5 2.93 2.4 2.87 0.1 3.08 0.3 4.08 2.5
20× 10 4.51 4.1 3.27 0.1 4.11 0.4 4.75 4.4
20× 20 2.83 7.2 2.33 0.3 2.39 0.7 2.89 7.3
50× 5 1.69 6.0 2.04 0.2 2.34 0.6 3.05 6.1
50× 10 3.13 10.8 2.63 0.4 3.18 1.0 4.04 10.9
50× 20 3.70 19.1 2.01 0.7 2.47 1.9 4.42 20.1
100× 5 0.79 12.3 0.98 0.4 1.18 1.3 1.78 12.8
100× 10 1.98 21.9 1.78 0.7 2.06 1.8 3.00 23.1
100× 20 2.56 39.5 1.76 1.3 2.12 2.2 3.04 40.9
200× 10 0.73 44.1 1.03 1.5 1.28 4.0 1.93 46.3
200× 20 1.35 79.4 1.30 2.7 1.68 8.0 2.52 82.1
500× 20 0.36 213 0.49 7.0 0.60 20.0 1.12 205

all 2.21 1.87 2.21 3.05

method. In our tests, we use algorithm NEH (Nawaz
et al., 1983) in its original version, which is consid-
ered to be the best one (champion) among simple
constructive heuristics for flow-shop scheduling. In
our tests, for each instance, TS+M algorithm is ter-
minated after performingMaxiter = 1 000, 3 000 and
30 000 iterations, whereas TNS performedMaxiter =
30 000 iterations. The value of tuning parameterPiter
is drawn from (Grabowski and Wodecki, 2004) equal
to 3. The effectiveness of our algorithms was ana-
lyzed in both terms of CPU time and solution quality.

For each test instance, we collected the following
values:

• PRI = 100%(CNEH − CA)/CNEH – the
value of the percentage relative improvements of
the makespanCA obtained by algorithmA =
{TSN, TS + M} with respect to the makespan
CNEH obtained by algorithm NEH.

• CPU – the computer time (in seconds).

Then, for each size (group)n × m, the following
measures of the heuristic quality were calculated

• APRI – the average (for 10 instances) percentage
relative improvements of the makespans.

• ACPU – the average (for 10 instances) computer
time.

The computational results presented in Table 1
show that, in terms of APRI values, our algorithm
TS+M, for Maxiter =30 000 iterations, performs
significantly better than TSN in comparable the CPU
times. The TS+M found makespans with the overall
average APRI equal to 3.05, whereas TSN found the
ones with 2.21. The superiority of TS+M over TSN
increases with the size of instances. And so, for the
largest instances withn × m = 500 × 20, the TS+M
found makespans with average APRI equal to 1.12,

A FAST TABU SEARCH ALGORITHM FOR FLOW SHOP PROBLEM WITH BLOCKING

75



whereas TSN found the ones with APRI = 0.36. For
the instances withn×m = 200× 20, respective val-
ues are equal to 2.52 and 1.35.

Analysing the performance of our algorithm, we
have observed that TS+M converges to the good so-
lutions significantly faster, on the average, than TSN.
The APRI values for all instances equal to 2.21 was
found by TSN in 30 000 iterations whereas for TS+M
the respective number is 3 000 iterations. Further-
more, about 85 % improvements obtained by TS+M
(i.e. APRI = 1,87 - for all instances) has been reached
in 1 000 iterations.

Generally speaking TS+M produces better results
than TSN in a significantly shorter time.

ACKNOWLEDGEMENTS

This research has been supported by KBN Grant 4
T11A 016 24. The authors are due to anonymous ref-
erees for their useful comments and suggestions.

REFERENCES

Abadi, I. N. K., Hall, N., and Sriskandarayah, C. (2000).
Minimizing cycle time in a blocking flowshop.Oper-
ations Research, 48:177–180.

Caraffa, V., Ianes, S., Bagchi, T., and Sriskandarayah, C.
(2001). Minimizing makespan in a blocking flow-
shop using genetic algorithms.International Journal
of Production Economics, 70:101–115.

Gilmore, P. and Gomory, R. (1964). Sequencing a state-
variable machine: a solvable case of the traveling
salesman problem. Operations Research, 12:655–
679.

Gilmore, P., Lawler, E., and Shmoys, D. (1985). Well-
solved special cases. E.L. Lawler, J.K. Lenstra,
A.H.G. Rinnooy Kan, D.B. Shmoys (Eds), The Trav-
eling Salesman Problem: A Guided Tour of Combina-
torial Optimization. Wiley: Chichester, pages 87–143.

Glover, F. (1989). Tabu search. part i.ORSA Journal of
Computing, 1:190–206.

Glover, F. (1990). Tabu search. part ii.ORSA Journal of
Computing, 2:4–32.

Grabowski, J. and Pempera, J. (2000). Sequencing of jobs
in some production system.European Journal of Op-
erational Research, 125:535–550.

Grabowski, J. and Wodecki, M. (2004). A very fast
tabu search algorithm for the flow shop problem with
makespan criterion.Computers and Operations Re-
search, 11:1891–1909.

Hall, N. and Sriskandarajah, C. (1996). A survey of ma-
chine scheduling problems with blocking and no-wait
in process.Operations Research, 44:510–525.

Leistein, R. (1990). Flowshop sequencing with limited
buffer storage. International Journal of Production
Research, 28:2085–2100.

McCormick, M., Pinedo, M., Shenker, S., and Wolf, B.
(1989). Sequencing in an assembly line with block-
ing to minimize cycle time. Operations Research,
37:925–935.

Nawaz, M., Enscore, E., and Ham, I. (1983). A heuristic al-
gorithm for them-machine,n-job flowshop sequenc-
ing problem. OMEGA The International Journal of
Management Science, 11:91–95.

Nowicki, E. (1999). The permutation flow shop with
buffers: A tabu search approach.European Journal
of Operational Research, 116:205–219.

Peng, Y., Soong, B., and Wang, L. (2004).Electronics Let-
ters, 40:375–376.

Reddi, S. and Ramamoorthy, C. (1972). On flowshop se-
quencing problems with no-wait in process.Opera-
tional Research Quarterly, 23:323–331.

Ronconi, D. (2004). A note on constructive heuristics for
the flowshop problem with blocking.International
Journal of Production Economics, 87:39–48.

Ronconi, D. and Armentano, V. (2001). Lower
bounding schemes for flowshops with blocking in-
process.Journal of the Operational Research Society,
52:1289–1297.

Smutnicki, C. (1983). Some properties of scheduling prob-
lem with storing constraints.Zeszyty Naukowe AGH:
Automatyka (in Polish), 34:223–232.

Taillard, E. (1993). Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research,
64:278–285.

ICINCO 2005 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

76


