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Abstract: In this paper a parallel and adaptive methodology for optimizing the time series prediction using System 
Identification is shown. In order to validate this methodology, a set of time series based on the sun activity 
measured during the 20th century have been used. The prediction precision for short and long term 
improves with this technique when it is compared with the found results using System Identification with 
classical values for the main parameters. 

1 INTRODUCTION 

The time series (TS) prediction is a very important 
knowledge area because the evolution of many 
processes is represented as a time series: 
meteorological phenomena, chemical reactions, 
financial indexes, etc. Although the behaviour of any 
of these processes may be due to the influence of 
several causes, in many cases the ignorance of these 
forces to study the process considering only the time 
series evolution that represent it. By this reason, 
numerous methods of time series analysis and 
mathematical modelling have been developed. 

System Identification (SI) techniques 
(Söderström, 1989) can be used to obtain the TS 
model. The model precision depends on the assigned 
values to certain parameters. In SI, a time series is 
considered as a sampled signal y(k) with period T 
that is modeled with an ARMAX (Ljung, 1999) 
parametric polynomial description of na dimension. 
Basically the identification consists in determining 
the ARMAX model parameters from measured 
samples. Then it is possible to compute the 
estimated signal ye(k) and to compare it with the 
real signal, calculating the error (y(k)-ye(k)). 

The recursive estimation updates the model in 
each time step k, thus modeling the system. The 
more sampled data are processed, the more precision 
for the model, because it has more information about 
the system behaviour history. We consider SI 
performed by the well-known Recursive Least 
Squares (RLS) algorithm (Ljung, 1999). This 
algorithm is mainly specified by the constant λ 
(forgetting factor) and the observed samples {y(k)}. 
There is not any fixed value for λ, even it is used a 

value between 0.97 and 0.995 (Ljung, 1991). The 
cost function F we use is defined as the value to 
minimize in order to obtain the best precision (see 
equation 1, where SN is the sample number). 

 
 
F(λ) =              
 
 

Equation 1: The considered cost function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The sunspot time series used in this work 
 
In this paper we use a time series set 

corresponding to sunspot series obtained from 
measured observations (ROB, 2004)(NOAA, 2004). 
We have used 13 time series (Fig. 1) showing daily 
sunspots: ten series (ss_00, ss_10, ss_20, ss_30, 
ss_40, ss_50, ss_60, ss_70, ss_80 and ss_90) 
corresponding to the sunspot measurements during 
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ten years each (for example, ss_20 compiles the 
sunspots from 1/1/1920 to 31/12/1929), two series 
(ss_00_40 and ss_50_90) covering 50 years each, 
and finally one series (ss_00_90) that covers all 
measurements of the 20th century. 

2 SYSTEM IDENTIFICATION 
BASED PREDICTION 

The recursive identification can be used to predict 
the following behaviour of the time series (Fig. 2a) 
from the data observed up to the moment. It is well 
known that SI allows finding, in sample time, a 
mathematical model of a system in the k time from 
which is possible to predict the system behaviour in 
k+1, k+2 and so on. As identification advances in 
the time, the predictions improve using more precise 
models. If ks is the time until the model is elaborated 
and from which we carry out the prediction, we can 
confirm that this prediction will have a larger error 
while we will be more far away from ks (Fig. 2b). 
The predicted value for ks+1 corresponds with the 
last estimated value until ks. When we have more 
data, the model starts to be re-elaborated for 
computing the new estimated values (Fig. 2c). 

The main parameters of the identification are na y 
λ. Both parameters have influence on the precision 
of prediction results, as it shows Fig. 3. As we can 
see, to establish an adequate value of na and λ may 
be critical in order to obtain a good prediction. By 
this reason, in the strategy of optimizing the 
prediction, we try, first of all, to establish an 
adequate dimension of the mathematical model for 
finding the optimal λ value using an adaptive 
algorithm. 

In order to do that, many experiments have been 
carried out. In these experiments, the absolute 
difference between the real and predicted values has 
been used in order to quantify the prediction 
precision (see equation 2). So, in Fig. 4 the results of 
many experiments are shown. In these experiments 
different measures of the prediction error (for short 
term DIFA1 and for long term DIFA50) for 200 
different values of the model are obtained. In order 
to establish reliable conclusions, these experiments 
have been made for different ks values. 

Figure 2: In (a) is displayed the ss_90 series. If ks=3000, we can see in (b) the long-term prediction based on the model 
obtained up to ks (na=30 and λ=0.98). The prediction precision is reduced when we are far from ks. In (c) we can see the 
predicted values for the successive ks+1 obtained from the updated models when the identification (and ks) advances 

We use our own terminology for the prediction 
error (DIFAX, where X is an integer) because like 
this the reader can understand more easily the degree 
of accuracy that we are measuring. 

Provisionally we conclude that the increase of na 
does not imply an improvement of the prediction 
precision (however a considerable increase of the 
computational cost is spent). This is easily verified 
using large ks values (the elaborated models have 
more information related to the time series) and 
long-term predictions. From these results and as 
trade-off between prediction and computational cost, 
we have chosen na=40 to establishing it as the model 
size for the future experiments 
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DIFA(X) =   
 
 
 
 
 
 
 
 
 
 
 

na influence (ff=0.98, ks=3600)
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Figure 3: Influence of the model dimension na and 
forgetting factor λ on the short-term (ks) and long-term 
(ks+50) prediction for the ss_90 series 

 
 
Eq.2. The cost function in the prediction 
measurements. 
 

The key parameter for the prediction optimization 
is λ. Fig. 5 shows, with more detail than in Fig. 3b, 
an example of the λ influence in the short-term and 
long-term predictions by representing its precision 
measure. It is clear that for any λ value is more 
precise the short-term prediction than the long-term 
prediction. However, we can observe the chosen 
value for λ is critical for finding a good predictive 
model (from the four chosen values, λ =1 produces a 
better prediction, even in the long term). This 
analysis has been confirmed making a great number 
of experiments with the sunspot series, modifying 
the initial prediction time, ks. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Measures of the prediction precision for the ss_90 time series from ks=3600, using λ=0.98. The measures have 
been made for models of dimensions between 2 and 200. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Influence of λ in the prediction precision for ss_90 with na=40 and ks=3600 
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3 OPTIMIZING THE 
PREDICTION WITH AN 
ADAPTIVE STRATEGY 

In order to find the optimum value of λ, we propose 
an adaptive algorithm inspired on the artificial 
evolution (Goldberg, 1989)(Rechenberg, 1973) and 
on the simulated annealing mechanism (Kirkpatrick, 
1983). This algorithm, named PARLS (Parallel 
Adaptive Recursive Least Squares), has been 
implemented using parallel processing units, built 
with neural networks (Gomez, 2003). In PARLS the 
optimization parameter λ evolves to predict new 
situations during the iterations of the algorithm. In 
other words, λ evolves at the same time that 
improves the cost function performance. 

The evolution mechanism (Fig. 6) is as follows: 
The first phase starts building a set of λ values 
covering the interval R uniformly from its selected 
middle λc. An equal number of parallel processing 
units (PUN) perform RLS identification with each λ 
in the interval, for a given number of sampling times 
(PHS). Then, the optimum λ is that whose 
corresponding cost function F is the minimum of all 
computed F, and from it a new set of λ values is 
generated and used in the next phase to perform new 
identifications during the following PHS samples. F 
is defined as the accumulated error of the samples in 
each phase, and the generation of new λ values is 
made with a more reduced R by the factor RED. 
Finally, PARLS stops when the number of phases 
(PHN) is reached, according to the total number of 
samples (TSN). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: All the λ values in the same phase running in the processing units are generated in the R interval from the 
previous phase optimum λ found, corresponding with the smallest F. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: PARLS architecture. A set of processing units generates the next set of λ values to be computed by RLS algorithm 
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Therefore, PARLS could be considered as a 
population-based rather than a parallel 
metaheuristic, because each processing unit is able 
to operate isolated, as well as the tackled problem 
itself as only a single real-valued parameter (λ) that 
is optimized. 

In Fig. 7 we can see a top-level view of the 
PARLS architecture: a set of processing units that 
performs system identification in each phase sends 
the errors found to the adaptive unit. This unit will 
generate the new search range in a feedback loop. 

4 EXPERIMENTAL RESULTS 

Some results found using the PARLS algorithm for 
predicting the next values from the last value 
registered for the time series of the sun activity 
indexes of the 20th century second half are shown in 
Table 1. The prediction precision is given by the 
results DIFA1 (short term) and DIFA50 (long term). 
These results are compared, for evauating purposes, 
with the obtained using RLS identification with 
some values of λ inside the classical range (Ljung, 
1991). We can see how PARLS finds a better 
precision. 

5 CONCLUSIONS 

The results shown in Table 1 are a part of the great 
number of experiments carried out using different 
time series and initial prediction times. In the great 
majority of the cases, PARLS offers better results 
than if λ random values are used. However, we are 
trying to increase the prediction precision. Thus, our 
future working lines suggest using genetic 
algorithms or strategies of analogous nature for, on 

the one hand, finding the optimum set of values for 
the parameters of PARLS and, on the other hand, 
finding the optimum couple of values {na, λ}. 
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Table 1: A sample of the prediction precision results for short and long term, compared with the ones obtained from 
three classical values of λ: 0.97, 0.98 and 0.995. The settings for this experiment are: benchmark= ss_50_90; na=40; 
ks=18,210; TSN=18,262; λc=1; R=0.2; RED=2 
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