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Abstract: In this paper, we address the problem of scheduling plans with probability and temporal constraints. We
illustrate our problem with an AND/OR graph, where we try to find a plan of tasks that satisfies all temporal
constraints and precedence relations between tasks, has a high probability of execution, a minimal cost and a
reduced time. Each task has a set of temporal constraints, a set of probabilities and a set of constant costs. Our
planner uses the temporal constraint propagation technique to simplify the resolution of a given problem.
We describe one approach to deal with a problem that has paid a little attention of planing community. This
problem is to combine temporal and probabilistic planning.

1 INTRODUCTION

While today’s planners can handle large problems
with durative actions and time constraints, few re-
searches have considered the problem concerning un-
certainty and the different durations of actions. For
example, IxTeT ((Ghallab and Laruelle, 1994), (La-
borie and Ghallab, 1995)) is a time-map manager that
handles symbolic constraints (precedence), numeric
constraints (intervals) and sharable resources. This
planner provides an initial complete plan which is
then run by temporal executive following a cycle: in-
tegrate external messages, repair the plan if needed,
decide which actions to execute. Other planners,
like “C-Buridan” ((Draper et al., 1994), (Kushmer-
ick et al., 1994)) deal with probabilistic information-
producing actions and contingent execution. their al-
gorithm is sound and complete but they do not con-
sider any kind of constraints between tasks. Their so-
lutions are satisfying rather than optimal.

Many existing works have been developed on tem-
poral planning or probabilistic planning but little at-
tention has been paid to the combination of these two
planning techniques.

In this paper, we address the problem of scheduling
plans with probability and temporal constraints. We
illustrate our problem with an AND/OR graph, where
we try to find a plan of tasks that satisfies all temporal
constraints and precedence relations between tasks,

has a high probability of execution, a minimal cost
and a reduced time.

This problem consists in finding a set of tasks to
be executed respecting all temporal constraints and
precedence relations between tasks. By temporal con-
straints we mean the start times, the end times and
possible execution durations of tasks. By precedence
relation we mean the order of execution of tasks and
the delays between tasks. Our planner uses the tem-
poral constraint propagation technique (Bresina and
Washington, 2000) to simplify the resolution of a
given problem. Practically, that can consist in with-
drawing the values which do not belong to any solu-
tion. This filtering avoids many attempts at resolution
which are likely to fail.

In the following, we consider that an agent is con-
cerned with achieving a set of tasks connected to-
gether in a network that forms an acyclic directed
AND/OR graph where nodes are tasks and edges cor-
respond to precedence relations. Given a set of tasks,
a start time, an end time, a set of durations, a set of
probabilities and a set of constant costs for each task,
a time delay and a precedence relation between tasks,
our approach allows the agent to determine the set of
tasks to be executed. The goal will be achieved and
all temporal and precedence constraints will be satis-
fied in order to guarantee a correct execution.
A plan leading to the achievement of the desired goals
and satisfying temporal constraints would be consid-
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ered asadmissible. From alladmissibleplans, we se-
lect the one with the minimal expected utility to be
executed.

The paper is organized as follows: in Section 2,
we describe some basic temporal concepts concern-
ing the knowledge of an agent, tasks and the repre-
sentation of a temporal precedence graph. In Sec-
tion 3 we formulate our problem; then in Section 4
we describe a temporal constraint propagation algo-
rithm. Section 5 shows how to calculate probabilities
of intervals of tasks, and in Section 6 we select the
admissibleplan which has the minimal expected util-
ity. Finally, we present some analysis and experiment
results in section 8 and we conclude in Section 9.

2 FORMAL FRAMEWORK

In this section, we describe the notion of a task and
a temporal precedence graph of tasks that we use
throughout the rest of the paper.

2.1 Task Description

The goal of the agent is to choose a subset of exe-
cuting tasks to convert some initial states into some
desired goals.

Definition 1 We call a task, the action realized by
an agent throughout a duration of time. For a task
t, one associates the list< (I−t , I+

t ,∆t, P rt, Ct) >,
where :

• I−t is the earliest start time, i.e., the earliest time at
which the execution of the task can start;

• I+
t is the latest end time, i.e., the time at which the

execution of the task must finish;
[I−t , I+

t ] is the time window referring to absolute
time during which taskt can be executed;

• ∆t = {d1
t , d

2
t , ..., d

m
t } is a set of possible durations

of time such thatdi
t ∈ ℜ (i = 1...m), is a period of

time necessary to accomplish the taskt;

• Prt = {pr1
t , pr2

t , ..., prm
t } is a set of probabilities

such thatpri
t ∈ ℜ (0 ≤ pri

t ≤ 1 and i = 1...m) is
the probability to executet duringdi

t ∈ ∆t;

• Ct = {c1
t , c

2
t , ..., c

m
t } is a set of costs payed to ac-

complish the taskt such thatci
t ∈ ℜ (i = 1...m) is

the cost to executet duringdi
t ∈ ∆t.

In this framework, we shall consider a task to be an
atomic activity which can be undertaken and accom-
plished in whole. No medium states are taken into
account - either the task is successfully accomplished
or it fails.

2.2 Precedence Constraints

In real world, The execution of task depends on cer-
tain conditions like the time, the resources and/or the
execution of other tasks. In this last case, we talk
about precedence constraints in the form of partial or-
der of a set of tasks. In this paper, We distinguish
between two kinds of precedence constraints :

1. Conjunctive Precedence Constraint: let
{t1, t2, . . . , tk} be tasks. There is a conjunc-
tive precedence constraint betweent and the set of
tasks{t1, t2, . . . , tk}, denoted[t1, t2, . . . , tk] → t,
if t can be executed only if all taskst1, t2, . . . , tk
have already been executed.

2. Disjunctive Precedence Constraint: let
{t1, t2, . . . , tk} be tasks. There is a disjunc-
tive precedence constraint betweent and the set of
taskst1, t2, . . . , tk, notedt1|t2| . . . |tk → t, if t can
be executed if at least one of taskst1, t2, . . . , tk is
executed.
A special case is whent has a unique predeces-
sor(t′ → t), in this situation we talk about simple
precedence constraint.

Note also that, it is often the case that after execut-
ing the preceding task one should wait for some time
before the execution of the following task becomes
possible. We shall callδti,tj

the time delaybetween
tasksti andtj .

2.3 Temporal Precedence Graph

The goal of the agent is to execute a subset of tasks
represented by an acyclic temporal graph where nodes
represent tasks (described in 2.1) and arcs repre-
sent precedence constraints between tasks (described
in 2.2). More formally :

Definition 2 Let T be a set of tasks as described
in 2.1, E be a set of conjunctive and disjunctive
precedence constraints such thatE = {c|c =
[t1, t2, . . . , tk] → t or c = t1|t2| . . . |tk → t where
t1, t2, . . . , tk ∈ T} and D be a set of delay con-
straints such thatD = {δti,tj

|δti,tj
∈ ℜ, ti, tj ∈

T and ∃ an arc from ti to tj}, a temporal prece-
dence graph is an acyclic oriented graph notedG =
(T,E,D) where nodes are elements ofT and arcs are
elements ofE.

Note that, nodes of the setT of any temporal prece-
dence graphG can be divided into three disjoint sets
T = TI ∪ TM ∪ TF of tasks having no preceding
tasks, intermediate tasks having preceding tasks and
being predecessors for other tasks and final tasks be-
ing no predecessors.
Figure 1 represents a temporal precedence graphG =
(T,E,D), whereT = {t1, ..., t18}, E represents the
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Figure 1: A temporal precedence graph of tasks

precedence constraints between tasks andD repre-
sents delay between tasks. We represent conjunctive
precedence constraints by arcs.

3 STATING THE PROBLEM

Given a temporal precedence graph of tasksG =
(T,E,D) whereT is a set of temporal tasks as de-
scribed in 2.1,E represents conjunctive and disjunc-
tive precedence constraints as described in 2.3 andD
is a set of delay between tasks, the problem to be
solved is to find a single plan of executable tasks in
T so that some goals which are of interest are satis-
fied. In fact a plan is specified by a partial order of
tasks. More formally :

Definition 3 A temporal plan generation problem is
a couple(G,T ′) whereG = (T,E,D) is a temporal
precedence graph of tasks andT ′ ⊂ TF ⊂ T is a
subset of final tasks inT .

The plan should satisfy all the constraints i.e.
AND/OR graph, precedence and temporal con-
straints. We are interested in finding a plan that has a
high probability to be executed during a reduced time
and with a reduced cost. To do that, we proceed in
four stages:

1. Determining ofFeasible Plans. A feasible plan is
a subgraph of the initial graphG where constraints
are conjunctive or simple. This subgraph represents
path in the graph starting by initial tasks and ending
by goal tasks. We use both depth-first and back-
wards search methods to find all feasible plans.TG

being the set of all goal tasks andTI the set of all
initial tasks, we start with the goal tasks to be ac-
complished, and we finish when all tasks inTI are
accomplished.
For example, consider the problem given byTG =
{t18} and TI = {t2} for the graph given in
Figure 1. Feasible plans, marked with a bold
line, are [{[t2, t7], [t1, t6]}, t10, t14, t15, t18] and
[{[t2, t7], [t1, t6]}, t10, t16, t18].

2. Determining ofAdmissible Plans. We call admis-
sible plan, a feasible plan where all temporal con-
straints of tasks and constraints between tasks are
satisfied.

3. Selection ofThe Most Likely Temporal Plan.
This step selects from all admissible plans, the best
likely one to be executed. This last must have a
high probability of execution and reduced cost and
time.

4. Selection ofThe Most Likely Temporal Schedul-
ing. This step selects from all scheduling of the
selected admissible plan, the one with the minimal
total expected utility.

We denote byPF the set of all feasible plans in tem-
poral precedence graphG and byT (P) the subset of
T of all the tasks occurring in the feasible planP.

In the next section we present the propagation al-
gorithm of intervals execution allowing to determine
from the feasible plan set, the set of admissible plans.

4 CONSTRAINT PROPAGATION
ALGORITHM

Given a temporal plan generation problem(G,T ′)
whereG is a temporal precedence graph andT ′ is
a subset of final tasks, we determine for each task in
each feasible plan the set of temporal intervals during
which a task can be executed by propagating temporal
constraints through the graph. Recall that a feasible
plan is a subgraph where constraints are conjunctive
or simple.
This propagation organizes the graph into levels so
that: l0 is the level containing initial tasks (TI ), l1
contains all nodes that are constrained only by ini-
tial tasks,li contains all nodes whose predecessors in-
clude nodes at levelli−1. For each node in any given
level li, we compute all its possible execution inter-
vals from its predecessors.
Given a taskt, we call st (respectivelyet) a possi-
ble start time oft (respectively a possible end time of
t), St (respectivelyEt) the set of possible start times
of t (respectively the set of possible end times oft)
andIt the set of all possible execution intervals of
the t. A possible execution interval is formed by a
possible start time and a possible end time.It =
{I1

t , I2
t , ..., Im

t } whereIi
t = [si

t, e
i
t] is the possible ex-

ecution interval to taskt taking its durationdi
t ∈ ∆t.

In the next section, we describe the algorithm used to
calculate the execution intervals of each task in each
feasible planP.

A SCHEDULING TECHNIQUE OF PLANS WITH PROBABILITY AND TEMPORAL CONSTRAINTS

79



4.1 Execution Intervals of Tasks

Given a taskt belongs a feasible planP (t ∈ T (P))
where∆t = {d1

t , d
2
t , ..., d

m
t } is its set of durations,

I−t is its earliest start time andI+
t is its latest end time,

the possible times for starting and ending execution of
t are calculated as follows :

• levell0 : ti ∈ TI (ti is an initial task) : Suppose that
the agent can begin its execution at a given time
notedstart time.

– St = {st|st = max(I−t , start time)}

– For i = 1 to i = m wherem is the number of
possible execution durations of taskt
Et = {ei

t|e
i
t = st + di

t}

– It = {Ii
t = [st, e

i
t] wherei = 1..m}. Ii

t is a
possible execution interval to taskt.

• level li : for each task in levelli, its possible start
times are computed as all the times at which the
predecessor tasks can finish. Thus we define the
set of possible start and end times of each task at
level li as follows :

1. If t ∈ TM ∪ TF where∆t = {d1
t , d

2
t , ..., d

m
t }

is the set of execution durations oft andt has a
unique task predecessort′ (t′ → t) whereEt′ =
{e1

t′ , ..., e
p
t′} then :

(a) Determine the setSt (initialized to∅) like that :
– For i = 1 to i = p (p is the number of possible

execution end times of taskt′)
St = St ∪ {si

t = max(I−t , ei
t′ + δt′,t)}

(b) Determine the setEt (initialized to∅) like that :
– For i = 1 to i = p

– For j = 1 to j = m

Et = Et ∪ {eij
t = si

t + d
j
t}

We call Iij
t = [sj

t , e
ij
t ] a possible execution in-

terval oft wheres
j
t ∈ St ande

ij
t ∈ Et.

2. If t ∈ TM ∪ TF where∆t = {d1
t , d

2
t , ..., d

m
t }

is the set of execution durations oft which has
a set of direct task predecessors{t1, t2, . . . , tn}
([t1, t2, . . . , tn] → t) and if for each taskti (i =

1..n), Eti
= {e1

ti
, e2

ti
, ..., e

ji

ti
} then :

(a) Determine the setSt (initialized to∅) of possi-
ble execution start times oft like that :

– For each taskti
– Fork = 1 to k = ji

St = St ∪ {sk
t = max(I−t ,max(ek

ti
+

δti,t))}
(b) Determine the setEt (initialized ∅) of possible

execution end time of taskt like that :
– Fork = 1 to k = p (p represents the cardinal-

ity of the setSt calculated in 2a)
– For r = 1 to r = m (m is the number of
possible execution durations of taskt)
Et = Et ∪ {ekr

t = sk
t + dr

t}

We callIkr
t = [sk

t , ekr
t ] a possible execution inter-

val of t wheresk
t ∈ St andekr

t ∈ Et.

4.2 Admissibility of Plans

A feasibleplanP ∈ PF , in order to become anad-
missibleone, must satisfy all the temporal constraints.
More formally, for any taskt ∈ T (P), for each
ei
t ∈ Et, the following condition :ei

t ≤ I+
t must hold.

If a possible end time ofEt exceedsI+
t , we consider

that execution intervalIi
t = [si

t, e
i
t] is not valid. In the

other hand, if all possible end times ofEt exceedI+
t ,

we consider that taskt is not able to execute. Thus
we consider the plan which contains such task is not
admissible.
We denote byPA the set of all admissible plansP.
We havePA =

⋃
P, whereP is an admissible plan.

5 PROBABILISTIC TEMPORAL
PROPAGATION

We describe in this section how we can weight each of
those intervals calculated as above, with a probability.
This probabilistic weight allows us to know the prob-
ability for a task to be executed during a given interval
of time. For that, a probability propagation algorithm
among the graph of tasks is described using for each
node its execution time probability and the end-time
probabilities of its predecessors.
The probability of a possible execution intervalIi

t de-
pends on its start time (the end time of the previous
tasks) and the probability of execution timepri

t. To
simplify, we consider in the rest of this paper, that no
time delay between tasks.

In the next section, we compute the probability that
the execution for a taskt to occur during an interval
Ii
t wheresi

t is a possible start time andei
t is a possible

end time of taskt.

5.1 Probability Propagation
Algorithm

Before a taskt can start its execution, all its direct
predecessors must be finished. The probability for the
execution oft start atsi

t is defined by :

1. If t has an only direct predecessort′ (t′ → t) in the
admissible planP whereEt′ = {e1

t′ , ..., e
p
t′} and

St = {s1
t , s

2
t , ..., s

m
t } is the set of possible execu-

tion start time of taskt then :

• The probability that taskt starts its execution at
si

t when its predecessort′ finishes its execution
at ej

t′ , notedprstart(s
i
t|e

j
t′), is calculated as fol-

lowing :
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– For i = 1 to i = m do
– For j = 1 to j = p do
– If si

t < e
j
t′ thenprstart(s

i
t|e

j
t′) = 0

– If si
t ≥ e

j
t′ thenprstart(s

i
t|e

j
t′) = 1

2. If t has a set of direct predecessors{t1, t2, . . . , tn}
in the admissible planP i.e. [t1, t2, . . . , tn] →
t then let ti ∈ {t1, t2, . . . , tn} where Eti

=

{e1
ti

, e2
ti

, . . . , e
ji

ti
} such thatji represents the num-

ber of possible end times of taskti and letSt =
{s1

t , s
2
t , ..., s

m
t } be the set of possible start times of

t then :

• The probability that taskt starts its execution at
sr

t (r = 1...m) when each direct predecessor
ti ∈ {t1, t2, . . . , tn} of t finishes its execution
atek

ti
(k = 1..ji) is calculated as following :

– If sr
t < max{ek

ti
} thenprstart(s

r
t |e

k
ti

) = 0

– If sr
t ≥ max{ek

ti
} thenprstart(s

r
t |e

k
ti

) = 1

A special case has to be considered for the first tasks.
Indeed, these initial tasks(∈ TI) have no predeces-
sors, the probability of starting the execution of an
initial taskt atst is given by :prstart(st) = 1.

5.2 Execution Intervals Probability

In this section, we describe the method used to calcu-
late the execution intervals probability which depends
on execution durations and execution start times.
Let prt(d

i
t|s

i
t) be the probability that the execution of

taskt takesdi
t units of time when it starts atsi

t.
The probability of an execution intervalIi

t of task t
that has an only direct predecessort′ is the probability
Prw(Ii

t |e
j
t′) that intervalIi

t = [si
t, e

i
t] is the interval

during which a taskt is executed, if the predecessor
task ends atej

t′ . This probability measures the proba-
bility that a taskt starts its execution atsi

t and ends at
ei
t. It is defined as following :

Prw(Ii
t |e

j
t′) = prstart(s

i
t|e

j
t′) ∗ prt(d

i
t|s

i
t)

wheree
j
t′ is the end time of the last executed task.

Indeed, a taskt can start its execution only when its
predecessort′ finishes. That is why the probability
of execution interval depends on the predecessor end
time.

In the case wheret, such that ∆t =
{d1

t , d
2
t , ..., d

m
t }, has a set of direct predecessors

{t1, t2, . . . , tn}, whereti ∈ {t1, t2, . . . , tn}, ends its

execution ate
kti

ti
(kti

= 1..ji s.t. ji represents the
number of possible execution end times of taskti),
we have :

Prw(Ir
t |e

kti

ti
) = prstart(s

r
t |e

kti

ti
) ∗ prt(d

r
t |s

r
t )

wherer = 1..m.

A special case has to be considered for the first task.
The probability that an initial taskt executes in the
interval Ir

t is equal to the probability that it starts its
execution atst and takesdr

t units of time. More for-
mally :

Prw(Ir
t ) = prstart(st) ∗ prt(d

r
t |st)

For example, suppose0.7 is the probability for the
execution of taskt that has an only direct predeces-
sor t′, to take 2 units of time when it starts at5
(Prt(d

i
t = 2|si

t = 5) = 0.7). We assume that the end
execution of the predecessor taskt′ is 3. The proba-
bility of the interval[5, 7] is :
Prw(Ii

t = [5, 7]|ej
t′ = 3) = 1 × 0.7 = 0.7

If for example taskt′ ends its execution at7, we ob-
tain :
Prw(Ii

t = [5, 7]|ej
t′ = 7) = 0 × 0.7 = 0

6 SELECTION OF THE MOST
LIKELY ADMISSIBLE PLAN

As the order of searching for plans is arbitrary, the
search may produce several admissible plans. In this
case, further criteria will be applied (Probability, cost
and time) to analyze and compare them so as to select
one to be executed. In this section we describe the
method we use to choose the most likely admissible
plan to be executed.

We are interested in finding a unique execution plan
that has a high probability and reduced cost and time.
To do that, we calculate expected utilities of cost and
time of all tasks. Then, we calculate the expected util-
ity of tasks of each admissible plan, finally we select
the one with the smallest expected utility to be the
most likely plan to be executed. We detail this as-
sumption in the next section.

6.1 Expected Utilities of Cost and
Time of Tasks

For each task in an admissible planP, we calculate its
expected utility of cost and time. The expected utility
of cost is calculated in function of costs associated
of execution durations and of execution probabilities
associated of execution intervals (calculated in 5.2).

The expected utility of time is calculated in func-
tion of possible execution durations and of execution
probabilities associated of execution intervals (calcu-
lated in 5.2). More formally :

Let t, where∆t = {d1
t , d

2
t , ..., d

m
t } is the set of

possible durations oft, Ct = {c1
t , c

2
t , ..., c

m
t } is the

set of execution costs oft whereck
t is the cost to ac-

complisht taking durationdk
t (k = 1..m).
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1. If t has an only direct predecessort′ such that
Et′ = {e1

t′ , e
2
t′ , . . . , e

r
t′} is its set of possible ex-

ecution end times, and if the probability oft to be
executed in durationdk

t where its predecessort′ has
finished its execution atej

t′ is notedPrw(Ik
t |e

j
t′)

(section 5.2), then :

• Expected Utility of cost oft is calculated as fol-
lowing :

µ(cost(t|t′)) =

r∑

j=1

m∑

k=1

Prw(Ik
t |e

j
t′) ∗ ck

t

To simplify, we denote µ(cost(t|t′)) by
µ(cost(t)).

• Expected Utility of time oft is calculated as fol-
lowing :

µ(time(t|t′)) =

r∑

j=1

m∑

k=1

Prw(Ik
t |e

j
t′) ∗ dk

t

To simplify, we denote µ(time(t|t′)) by
µ(time(t)).

2. If t has a set of direct predecessort1, t2, . . . , tn
then, let Eti

= {e1
ti

, e2
ti

, . . . , e
rti

ti
} be the

set of possible execution end times ofti ∈
{t1, t2, . . . , tn} then :

• Expected Utility of cost oft is calculated as fol-
lowing :

µ(cost(t|t1, . . . , tn)) =

n∑

i=1

µ(cost(t|ti))

To simplify, we denoteµ(cost(t|t|t1, . . . , tn))
by µ(cost(t)).

• Expected Utility of time oft is calculated as fol-
lowing :

µ(time(t|t1, . . . , tn)) =

n∑

i=1

µ(time(t|ti))

To simplify, we denoteµ(time(t|t1, . . . , tn)) by
µ(time(t)).

In the next section, we calculate the total expected
utility of each admissible planP.

6.2 Expected Utility of Plans

The expected utility of a planP is calculated in func-
tion of expected utilities of cost and time (calculated
above).
The total expected utility of cost of a planP is cal-
culated by adding all expected utilities of cost of all
tasks in this plan. More formally :

µ(cost(P)) =
n∑

i=1

µ(cost(ti))

wheren is the number of tasks inP.
The total expected utility of time of a planP is calcu-
lated as following:

• µ(time(P)) is initialized to max(µ(time(ti)))
whereti ∈ TF

– If t has an only direct predecessort′ with
expected utility µ(time(t′)), then we add
µ(time(t′)) to the total expected utility of time
of the plan. More formally :

µ(time(P)) = µ(time(P)) + µ(time(t′))

– If t has a set of direct predecessors
{t1, t2, . . . , tn} then, we add the maximum
of expected utilities of taskst1, t2, . . . , tn to the
total expected utility of time of the plan. More
formally :

µ(time(P)) = µ(time(P))+maxn
i=1µ(time(ti))

To calculate the total expected utility for each plan
P ∈ PA, we assign a value to each plan according to
the preferences of the user. We translate these pref-
erences into a functionµ(P) : µ called function of
utility. This function is prone to the cost and the time
that are balanced by coefficientsα andβ. This al-
lows us to adjust the relative importance of the vari-
ous utilities according to the preferences of the user.
This utility function is described by :

µ(P) = αµ(cost(P)) + βµ(time(P))

whereα + β = 1 andP ∈ PA.
Among all admissible plans, we choose the one

with the smallest utility to be executed :

P∗ = argminP∈PA
µ(P)

This plan is the most likely one to be executed satis-
fying all constraints and that has a high probability to
be executed with reduced cost an time of execution.
In the next section, we determinate the most likely
scheduling to be executed.

7 SELECTION OF THE MOST
LIKELY SCHEDULING

We call scheduling of a planP, the set of tasks of
P where each task is executed in a well defined in-
terval. If there is a simple precedence constraint be-
tween two tasksti andtj (ti → tj), then the execu-
tion interval of taskti must occur before the one of
tasktj . More formally, letT (P) = {t1, t2, . . . , tn}
be the set of tasks of an admissible planP, and
Iti

= {I1
ti

, I2
ti

, . . . , I
jti

ti
} be the set of execution in-

tervals of taskti in T (P), we have :

Pord = {(t1, I
kt1

t1
), (t2, I

kt2

t2
), ..., (tn, I

ktn

tn
)}

ICINCO 2005 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

82



is a possible scheduling inP wherekti
= 1..jti

such

that if ti → tj (ti andtj ∈ Pord) thene
kti

ti
≤ s

ktj

tj
.

We have also :

P =
⋃

Pord

In the worst case, the total number of scheduling of
a planP is equal to the product of cardinalities of all
possible execution interval sets of all tasks inT (P).
More formally this number is equal to :

No(Pord) = jt1 ∗ jt2 ∗ . . . ∗ jtn

In the next section, we calculate the expected utility
of cost and the expected utility of time for each task
(t, Ikt

t ) ∈ Pord.

7.1 Expected Utilities of Cost and
Time of Tasks of Scheduling

for each Pord =

{(t1, I
kt1

t1
), (t2, I

kt2

t2
), ..., (tn, I

ktn

tn
)}, we calcu-

late the expected utility of cost and the expected

utility of time for each taskti to be executed inI
kti

ti

More formally :

1. If (t, Ikt

t ) ∈ Pord has an only direct predecessor
(t′, I

kt′

t′ ) ∈ Pord where(t, Ikt

t ) → (t, Ikt

t ) then :

• The expected utility of cost of(t, Ikt

t ) is calcu-
lated as following :

µ(cost((t, Ikt

t )|(t′, I
kt′

t′ ))) = Prw(Ikt

t |e
kt′

t′ )∗ckt

t

• The expected utility of time is calculated as fol-
lowing :

µ(time((t, Ikt

t )|(t′, I
kt′

t′ ))) = Prw(Ikt

t |e
kt′

t′ )∗dkt

t

2. If (t, Ikt

t ) ∈ Pord has a set of direct predeces-

sors{(t1, I
kt1

t1
), (t2, I

kt2

t2
), ..., (tp, I

ktp

tp
)} then, let

(ti, I
kti

ti
) ∈ {(t1, I

kt1

t1
), (t2, I

kt2

t2
), ..., (tp, I

ktp

tp
)}

then :
• The expected utility of cost of(t, Ikt

t ) is calcu-
lated as following :

µ(cost((t, Ikt
t )|(t1, I

kt1
t1

), (t2, I
kt2
t2

), ..., (tp, I
ktp

tp
)))

=

pX
i=1

µ(cost((t, Ikt
t )|(ti, I

kti
ti

)))

• The expected utility of time of(t, Ikt

t ) is calcu-
lated as following :

µ(time((t, Ikt
t )|(t1, I

kt1
t1

), (t2, I
kt2
t2

), ..., (tp, I
ktp

tp
)))

=

pX
i=1

µ(time((t, Ikt
t )|(ti, I

kti
ti

)))

In the next section, we calculate the total expected
utility of a schedulingPord.

7.2 Expected Utility of Scheduling

To calculate the total expected utility of a scheduling
Pord, we calculate first the total expected utilities of
cost and time ofPord as following :

1. The total expected utility of cost ofPord is calcu-
lated by adding all expected utilities of all tasks in
Pord. More formally :

µ(cost(Pord)) =

n∑

i=1

µ(cost(ti, I
kti

ti
))

wheren is the number of tasks ofP.

2. The total expected utility of time ofPord is calcu-
lated as following :

• µ(time(Pord)) is initialized to

max(µ(time(ti, I
kti

ti
))) whereti ∈ TF

– If (t, Ikt

t ) has an only direct predecessor
(t′, I

kt′

t′ ) such that its expected utility is

µ(time(t′, I
kt′

t′ )) then we add this expected
utility to the total expected utility of time of
plan. More formally :

µ(time(Pord)) =

µ(time(Pord)) + µ(time(t′, I
kt′

t′ ))

– If (t, Ikt

t ) has a set of direct predecessors

{(t1, I
kt1

t1
), (t2, I

kt2

t2
), ..., (tp, I

ktp

tp
)} then, we

add the maximum of expected utilities of these
tasks to the total expected utility of time of plan.
More formally :

µ(time(Pord)) =

µ(time(Pord)) + max
p
i=1

µ(time(ti, I
kti

ti
))

For each scheduling Pord =

{(t1, I
kt1

t1
), (t2, I

kt2

t2
), ..., (tn, I

ktn

tn
)} of the ad-

missible planP chosen to be executed, we calculate
its utility function, whereα+β = 1 and, defined by :

µ(Pord) = α ∗ µ(cost(Pord)) + β ∗ µ(time(Pord))

From all scheduling formed byP we choose the one
with the smallest expected utility to be executed :

P∗
exec = argminPord∈P µ(Pord)

This plan determines the expected intervals of execu-
tion in which tasks should be executed by the agent.

8 ANALYSIS AND EXPERIMENTS

The number of execution intervals for each taskt de-
pends on the number of its direct precedence tasks, its
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time window[I−t , I+
t ] and the cardinality of its dura-

tion set|∆t|. When one of these constraints increases,
this number increases. The number of plans in a graph
depends on the number of execution intervals of tasks,
the number of tasks and the number of precedence
constraints. This number increases when the number
of execution intervals or the number of tasks increases
and it decreases when the number of precedence con-
straints increases.
In the worst case, the number of execution intervals
for an initial task is equal to the cardinality of its du-
ration set. The number of execution intervals for an
intermediate or final task which has an only direct pre-
decessor is equal to the cardinality of its duration set
multiplied by the cardinality of the set of the ends of
the direct predecessor task. The number of execution
intervals for an intermediate or final task which has
a set of direct predecessors is equal to the cardinality
of its duration set multiplied by all the cardinalities
of the sets of the ends of the direct predecessor tasks.
More formally, in the worst case :

• If t ∈ TI then|It| = |∆t|

• If t ∈ TM ∪ TF wheret has an only direct prede-
cessort′ then|It| = |∆t| ∗ |Et′ |

• If t ∈ TM∪TF andt has a set of direct predecessors
{t1, t2, . . . , tn} then|It| = |∆t| ∗

∏n

i=1
|Eti

|

In our experimental tests, we used these parameters :
the total number of tasks, the number of plans we can
obtain if all temporal constraints are correct (worst
case) and the number of plans obtained without the
ones violating temporal constraints.

We remarked that theoretically, for 50 tasks with 5
execution intervals for each, we obtain 250000 plans
but with our approach, we generate only 20569 plans.
These first experimental results consolidate our idea
of the founded good of the approach. However, ad-
ditional experimental tests on the other factors, as
the size of the temporal windows and the number of
precedence constraints, are to be analyzed.

9 CONCLUSION

In this paper we present an approach of temporal
probabilistic task planning where we construct a plan
of tasks that satisfies all constraints and executes with
a high probability during a reduced time and with a
reduced cost. Our approach allows the agent to deter-
mine the set of tasks to execute and when to execute
them by respecting all temporal and precedence con-
straints. This approach is one of the first techniques
combining probability and time in planning.

Future work will be focused on other kind of exper-
imental factors and on comparing our approach with
other ones. Another issue consists in finding other

heuristics to choose the most likely plan to be exe-
cuted and reducing the search space then comparing
them with the heuristics presented in this paper.
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