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Abstract: Data from a process or system is often monitored in order to detect unusual events and this task is required in
many disciplines. A decision rule can be learned to detect anomalies from the normal operating environment
when neither the normal operations nor the anomalies to be detected are pre-specified. This is accomplished
through artificial data that transforms the problem to one of supervised learning. However, when a large
collection of variables are monitored, not all react to the anomaly detected by the decision rule. It is important
to interrogate a signal to determine the variables that are most relevant to or most contribute to the signal
in order to improve and facilitate the actions to signal. Metrics are presented that can be used determine
contributors to a signal developed through an artificial contrast that are conceptually simple. The metrics are
shown to be related to traditional tools for normally distributed data and their efficacy is shown on simulated
and actual data.

1 INTRODUCTION variables that are most relevant to or most contribute
to a particular signal. We refer to these variables as
contributorsto the signal. These are the variables that
receive priority for corrective action. Many industries
use an out-of-control action plan (OCAP) to react to
a signal from a control chart. This research enhances

Statistical process control (SPC) is used to detect
changes from standard operating conditions. In multi-
variate SPC a x 1 observation vectox is obtained at
g;ﬁgﬁ??ﬁ'ﬁgﬂ?f gngz(;)s tz?]tf\}g:st; es gr? hdaeiggéeelgn?osand extends OCAP to incorporate learned control re-
detect whether the observation falls in or out of the 9'°NS and large numbers of variables.
control region representing standard operating condi- A physical event, such as a broken pump or a
tions. This leads to two important comments. First, clogged pipe, might generate a signal from a con-
the control region is defined through an analytical ex- trol policy. However, not all variables might react
pression which is based on the assumption of normalto this physical event. Instead, when a large collec-
distribution of the data. Second, after a signal further tion of variables are monitored, often only a few con-
analysis is needed to determine the variables that con-tribute to the signal from the control policy. For exam-
tribute to the signal. ple, although a large collection of variables might be
Our research is an extension of the classical meth- Monitored, potentially only the pressure drop across a
ods in terms of the above two points. The results in PUMP might be sensitive to a clogged pipe. The ob-
(Hwang et al., 2004) described the design of a control jective of this work is to |(_j§ant|fy these _contnkqutors in
region based only on training data without a distrib- order to improve and facilitate corrective actions.
utional assumption. An artificial contrast was devel- It has been a challenge for even normal-theory
oped to allow the control region to be learned through based methods to completely solve this problem. The
supervised learning techniques. This also allowed for key issue is the interrelationships between the vari-
control of the decision errors through appropriate pa- ables. It is not sufficient to simply explore the mar-
rameter values. The second question is to identify ginal distribution of each variable. This is made clear
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in our illustrations that follow. Consequently, early andy = 1 for those drawn fromy,(z), then learning
work (Alt, 1985; Doganaksay et al., 1991) required control region can be considered to define a solution
improvement. Subsequent work under normal theory to a two-class classification problem. Points whose
considered joint distributions of all subsets of vari- predictedy are—1 are assigned to the control region,
ables (Mason et al., 1995; Chua and Montgomery, and classified into the “standard” or “on-target” class.
1992; Murphy, 1987). However, this results in a Points with predicted, equal tol are are classified
combinatorial explosion of possible subsets for even into the“off-target” class.

a moderate number of variables. In (Rencher, 1993) For a given pointz, the expected value afis

and (Runger et al., 1996) an approach based on con-
ditional distributions was used that resulted in feasi- (%) = E(lz) = ply =1|z) —ply = ~1]z)
ble computations, again for normally distributed data. = 2p(y=1lz) -1

Only one metric was calculated for each variable. Then, according to Bayes’ Theorem,
Furthermore, in (Runger et al., 1996) a number of rea-

sonable geometric approaches were defined and these p(y = —1]z) = ply = —1lz)

were shown to result in equivalent metrics. Still, one p(@)

metric was computed for each variable. This idea is = plel = Dply = 1)

summarized briefly in a following section. Although P(I‘f—(:))P(y = —1) +p(z|)p(y = 1)

there are cases where the feasible approaches used in = BT RE ()

(Rencher, 1993) and (Runger et al., 1996) are not suf- ‘ 4

ficient, they are effective in many instances, and the where we assumg(y = 1) = p(y = —1) for train-

results indicate when further analysis is needed. Thising data, which means in estimatitg(y|z) we use

is illustrated in a following section. the same sample size for each class. Therefore, an
The method proposed here is a simple, computa- €stimate of the unknown densifyx) is obtained as

tionally feasible approach that can be shown to gen- A 1 — fiz)

eralize the normal-theory methods in (Rencher, 1993) flz) = 5@ x fo(z), 2

and (Runger et al., 1996). Consequently, it has the ad-
vantage of equivalence of a traditional solution under where f,(z) is the known reference probability den-
traditional assumptions, yet provides a computation- sity function of the random data andx)is learned
ally and conceptually simple extension. In Section 2 from the supervised algorithm. Also, the odds are

a summary is provided of the use of an artificial con-

trast with supervised learning is to generate a control p(y = —1fz) _ f(z) 3)
region. In Section 3 the metric used for contributions p(y = 1|z) fo(x)

i_s presented. The following section present illustra- The assignment is determined by the valug af)
tive examples. A dataz is assigned to the class with densjfyx)

when
p(x) <wv,
2 CONTROL REGION DESIGN and the class with densitf(z) when
w(x) > v.

Modern data collection techniques facilitate the col- ) _

lection of in-control data. In practice, the joint distri- Wherev is a parameter that can used to adjust the error
bution of the variables for the in-control data is un- rates of the procedure. _ .

known and rarely as well-behaved as a multivariate ANy supervised learner is a potential candidate to
normal distribution. If specific deviations from stan- build the model. In our research, a Regularized Least
dard operating conditions are not a priori specified, Square Classifier (RLSC) (Cucker and Smale, 2001)
leaning the control region is a type of unsupervised is employed as the specific classifier. Squared error
learning problem. An elegant technique can be used!0Ss is used with a quadratic penalty term on the co-
to transform the unsupervised learning problem to a efficients (from the standardization the intercept is

supervised one by using an artificial reference distrib- Z€ro). Radial basis functions are used at each ob-
ution proposed by (Hwang et al., 2004). This is sum- _served point W|.th common standard deviation. That

marized briefly as follows. is the mean of; is estimated from

Supposef(z) is an unknown probability density n 1
function of in-control data, angy(z) is a specified w(z) Bo + Zﬁj exp (—2|x - g;jHQ/O'Q)

reference density function. Combine the original data j=1

setxy, z9, ..., oy Sampled fromfy(z) and a random n

sample of equal siz&' drawn from fy(z).If we as- = Bo+ > BiKy(x,z; (4)
signy = —1 to each sample point drawn frogfi{x) ; ! )
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Also, letg = (B1,...,0,). The g; are estimated
from the penalized least squares criterion

n n 2

min > <y ~0 =3 e (~3te- wjn%z)) +16112

®)
wheren is the total number of observations in the
training data set. If ther's andy are standardized
to mean zero then it can be shown thgt= 0. Also,
let the matrix/ denote thex x n matrix with (¢, j)th
element equal td<, (x;,x;). Then for a fixedr the
solution for3 is

B=(K+ny)"y
and this is used to estimatéx).

(6)

3 CONTRIBUTORSTO A SIGNAL

Ly, that maximizes), (z*) is the one that maximizes
p(y = —1|z). Therefore, they, (z*) metric is similar

to one that scores the change in estimated probability
of an in-control point.

A point that is unusual simultaneously in more than
one variable, bunot in either variable individually, is
not well identified by this metric. That is, if* is
unusual in the joint distribution ofz1, ..., x) for
k < p, but not in the conditional marginal distribu-
tion of f(z;lx; = «%,4 # j) then the metric is not
sensitive. This implies that the point is unusual in a
marginal distribution of more than one variable. Con-
sequently, one can consider a two-dimensional set

and a new metric

. T

Njk(x™) = max I( )
sl fa*)

©)

In this section, a metric is developed to identify vari- to investigate such points. This two-dimensional met-
ables that contribute to a signal from SPC based uponfic would be applied if none of the one-dimensional

artificial contrasts.
variableqzy, z, . ..

Suppose there arecorrelated
,Tp). Letz* be an observed data

metrics n,(z*) are unusual.  Similarly, higher-
dimensional metrics can be defined and applied as

point that results in a signal from the control scheme. needed. The two-dimensional metrjg, (z*) would

Define the set
Ly ={z|z; = z7,i # k}

maximize the the estimated density overandzxy. It
might use a gradient-based method or others heuris-
tics to conduct the search. The objective is only to

There are several reasonable metrics for the contri- determine the pair of variables that generate large

bution of variabler, to the out-of-control signal. We
use

~

f(=)

= Imax —<
s€Li flar)
This measures the change froftw)/f(«*) that can
be obtained from only a change iq. If ng(z*) is
small thenry, is not unusual. If),(2*) is large, then a
substantial change can result from a change,tand

(2" ()

changes in the estimated density. The exact value
of the maximum density is not needed. This per-
mits large step sizes to be used in the search space.
However, the focus of the work here is to use the
one-dimensional metricg; (z*)'s. Because the con-
tribution analysis is only applied to a point which
generates a signal, no information for the set of one-
dimensionaly's implies that a two-dimensional (or
higher) metric needs to be explored. However, the

x;, is considered to be an important contributor to the One-dimensiona,’s are effective in many cases, and

signal.
From (2) it can be shown that(z) is a monotone

function of the estimated density rati(x)/ fo(z).
Therefore, the value;, € L, that maximizes the es-
timated density ratio also maximiz@gz) over this
same set. In the special case tlfigix) is a uniform
density the value oft, € L, that maximizesi(x)

also maximizesf(:c) over this set. Consequently,

they provide a starting point for all cases.

3.1 Comparison with a Multivariate
Normal Distribution

In this section, we assume the variables follow a mul-
tidimensional normal distribution. Under these as-
sumptions, we can determine the theoretical form of

n(x*) considers the change in estimated density that the metricy, (2*). Given the estimate of the unknown

can be obtained from a changeitp.
From (3) we have thajy, is the maximum odds ra-

tio obtained over.,,
. by = —1]z)/p(y = 1|x)

M) = e Te")/hly = 1[e")

To compare values ofy, (z*) overk the denominator

(8)

densityf(x), definez, as

Ty = argma&eka(x)

For a multivariate normal density with mean vector
and covariance matrix

zo =argmin,, (z—p)'S7 (- p)

in (8) can be ignored and the numerator is a monotone Thereforex is the point inL; at which Hotelling’s

function of p(y = —1|z). Consequently, the value in

statistic is minimized. Consequently, is the same



ICINCO 2005 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

point used in (Runger et al., 1996) to define the contri-

bution of variabler,, in the multivariate normal case. Table 1: Type | error for In-control Data

The use of the metric in (7) generalizes this previous cut-off value 0 0.2 0.4
result from a normal distribution to an arbitrary distri- the training data 0.085| 0.0325) 0.015
bution. the testing data| 0.1 | 0.0525| 0.025
Table 2: Type Il error for Out-of-control Data with Different
4 |LLUSTRATIVE EXAMPLE St Mape
cut-off value 0 0.2 0.4
4.1 Learningtheln-Control Eliog 00-7285 00-883925 Ooégfi
11 7275 0. 5| 0.8975
Boundary (20) | 04875/ 0.6125| 0.7325
2,2 0.3225| 0.45 0.565
To demonstrate that our method is an extension of the E3 Og 01025 0.215 | 0.325
traditional method, first we assume that the in-control (3:3) 0055 (010251 0.185

data follow a multivariate normal distribution. In the
case of two variables, we capture a smooth, closed
elliptical boundary. Figure (1) shows the boundary )
learned through an artificial contrast and a supervised  1esting data sets are used to evaluate performance,
learning method along with the boundary specified that is, Type | error and Type Il error of the classifier.

by Hotelling’s statistic (Hotelling, 1947) for the in- 1hey are generated from similar multivariate normal
control data. distributions with or without shifted means. Each test-

The size of in-control training data is 400 and the Nd data set has a sample size of 400.

size of uniform data is also 400. The in-control train- ~ Table 1 gives the Type | error for the training data
ing data are generated from the two-dimensional nor- and for the testing data whose mean is not shifted. It

mal distributionX = C x Z with covariance shows that the Type | error decreases when the cut-
off value of the boundary increases. Table 2 gives the

Cov(X) = CC’ — 1 05 Type Il error for the testing data with shifted mean. It

05 1 shows that for a given shift, the Type Il error increases

. . , - ) when the cut-off value of the boundary increases. It
andZ following two-dimensional joint standardized |50 jllustrates that, for a given cut-off value, the fur-

normal distribution withp = 0. The smoothing para-  ther the mean shifts from the in-control mean, the
meter for the classifier is = 4/800. The parameter  |ower the Type Il error.

for the kernel function i& = /8. The out-of-control

training data are generated from the reference distri- . . .
bution. There are four unusual points: (8,0), B 4.2 Contribution Evaluation

(3,1),C(3,2),and D(3, 3).
The probability density function of the in-control data

. : : o M AN f(z) is estimated by (2). For the normal distribution
- ot atofo | - M N in Section 3.1 examples are provided in the cases of
sfiéﬁﬁitif:it‘diﬁisﬁig:i L ANl two-dimensions (Figure 2)and 30-dimensions (Figure
+ in-control data k % o RN .
g ; o 3).

- _out-of-control data

= For the case of two dimensions, Figure (1) shows 4
g points at(3,0), (3,1), (3,2), (3,3). The correspond-
G ing curves forf(x) for each point are shown in Fig-
ure (4) through Figure (7). These figures show that
the variable that would be considered to contribute
to the signal for point$3,0) and (3, 1) is identified
X _ . by the corresponding curve. For poif3t 2) the vari-
TELIinemn able is not as clear and the curves are also ambiguous.
R T For the point(3, 3) both variables can be considered

_ . ) _ L - to the signal and this is indicated by the special case
B I o 1 2 s e where all curve are similar. That is, no proper subset
' of variables is identified and this is an example where

_ _ _ a higher-dimensional analysis (such as wijth(z*))
Figure 1: Learned Boundaries and Hotelling’s Boundary g yseful.
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Based on Means Based on Values

0.16 ~ o 02— — r
\ f(mu, ,x,) = - k=2
\ 172 0.18 (3 0)
0.14 \ a
\ 0.16 a
0.12 \ B /\
0.14 /
0.1 "\\ B 012
0.08 \"‘,\‘ 4 01
006 // \\\ i 0.08 ) \
/ \\‘ 0.06 ’,/
0.04F / \ g / \\
// \ 0.04| /
0,021 / \ 4 / \\
- 0.02F . {
7 S~ - .
% = 2 a o 1 2 s % = Z o i A 2 7N
Figure 2: Density estimate for two dimensions Figure 4: f(x1,0) and f (3, z2)
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Figure 3: Density estimate for thirty dimensions Figure 5:f(z1,1) and f (3, z2)
4.3 Exampl ein 30 Dimensions Note that the changes in density match the contrib-

utors to an unusual point. Note that for pofitthe
density metric does not indicate any subset of vari-
dimensions. Out-of-control points are generated and 3PS as contributors. This is a special case and such a
density curves are produced for each variable. Thesedraph implies that all variables contribute to the signal
curves are proportional to the conditional density with from the cha(t because these graphs are only gener-
all the other variables at the observed valuesFer ~ ated after a signal from a control has been generated.
30 the size of in-control training data is 200 and the SUCh a special case is also distinguished from cases
size of the uniform data is also 200. Curves for out- Where only a proper subset of variables contribute to

For a higher dimensional example, consiger 30

of-control points the signal. , _
For the particular case g = 30 dimensions,
A=(3,0,...,0) values ofn(z;) are calculated for these points and
k = 1,...,30 in Figure (11) through Figure (13).
B =(3,-3,0,...,0) The results indicate the this metric can identify vari-

C=(33 3) ables that contribute to the signal. For paihsimi-
e lar comments made for the density curves apply here.

are generated. Fgr = 30 dimensions the density The metric does notindicate any subset of variables as

curves are shown in Figure (8) through Figure (10). contributors. This is a special case and such a graph
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Figure 7: f(x1,3) and f(3, z2)
Figure 9: Densityf(z) as a function ofx, for k =
1,2,...,30 for Point B

implies that all variables contribute to the signal from
the chart.

Figure (15) shows the learned boungaries with dif-

ferent cut-off values and the Hotellirig® boundary
5 MANUFACTURING EXAMPLE with « being 0.005. The learned boundary well cap-

tures the characteristic of the distribution of the in-
The data set was from a real industrial process. Therecontrol data. We select the learned boundary with
are 228 samples in total. To illustrate our problem, cut-off v = 0.4 as the decision boundary and obtain
we use two variables. Here, Hotellifigf is employed three unusual points: Point 1, 2, and 4. The metric is
to find out in-control data. The mean vector and co- applied to Point 2 and 4 and Table (3) and it demon-
variance matrix are estimated from the whole data set stratesn values for each dimension for each point.
andT? follows ax? distribution with two degrees of ~ Figure (16) and Figure (17) demonstrafér,, z,)
freedom. The false alarmay, is set as 0.05 in order when as functions of; andz, for Point 2 and 4,
to screen out unusual data. Figure (14) displays therespectively. For Point 2y, is significantly larger
Hotelling 72 for each observation. From the results, thans, so the first variable contributes to the out-of-
we obtain 219 in-control data points that are used as control signal. For Point 4;; andr), are close so both
the training data. variables contributes to the out-of-control signal.
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X 107 Based on ValuesPoint 3
T T T

Figure 10: Densityf(x) as a function for k =

1,2,...,30 for Point C
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Figure 11: Contributor metria), for variablesk =
1,2,...,30 for Point A

6 CONCLUSION
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Figure 12: Contributor metriay, for variablesk =
1,2,...,30 for Point B
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Figure 13: Contributor metriey, for variablesk =
1,2,...,30 for Point C

produces solutions for known cases, yet it generalizes

A supervised method to learn normal operating con- {0 @ broader class of problems. The one-dimensional
ditions provides a general solution to monitor systems Metric used here would always be a starting point for
of many types in many disciplines. In addition to Such a contribution analysis. Future work is planned
the decision rule it is important to be able to inter- {0 €xtend the metric to two- and higher-dimensions
rogate a signal to determine the variables that con- t0 better diagnose contributors for cases in which the
tribute to it. This facilitates an actionable response ©One-dimensional solution is not adequate.

to a signal from decision rule used to monitor the

process. In this paper, contributors to a multivari-

ate SPC signal are identified from the same func-

Table 3:7n for Point 2 and 4

tion that is learned to define the decision rule. The m 7
approach is computationally and conceptually sim- Point2 | 16.791| 1.0001
ple. It was shown that the method generalizes a tra- Point4 | 3.6737| 1.6549

ditional approach for traditional multivariate normal
theory. Examples show that the method effectively re-
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Figure 14: Hotellingl™
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