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Abstract: Locating sensors in2D can be often modeled as an Art Gallery problem. Unfortunately, this problem is NP-
hard, and no finite algorithm, even exponential, is known for its solution. Algorithms able to closely 
approximate the optimal solution and computationally feasible in the worst case are unlikely to exist. 
However this is an important problem and algorithms with “good” performance in practical cases are sorely 
needed. After reviewing the available algorithms, we propose a new sensors location incremental technique. 
The technique converges toward the optimal solution. It locally refines a starting approximation provided by 
an integer covering algorithm, where each edge is observed entirely by at least one sensor. A lower bound 
for the number of sensor, specific of the polygon considered, is used for halting the algorithm, and a set of 
rules are provided to simplify the problem. 

1 INTRODUCTION 

A number of computer vision tasks, as inspection, 
surveillance, image based rendering, constructing 
environment models, require multiple sensor 
locations, or the displacement of a sensor in multiple 
positions.  
Sensor placement is an active area of research. A 
recent survey (Scott and Roth, 1992) refers in 
particular to tasks as reconstruction and inspection. 
Several other tasks and techniques were considered 
in the more seasoned surveys (Tarabanis et al., 1995, 
Newman and Jain, 1995). Practical sensor planning 
problems require considering a number of 
constraints, such as image resolution, field of view 
of the sensors, feature visibility, lighting, etc. 
Visibility is clearly the fundamental constraint for 
any kind of task and optical sensor. The sensor is 
usually modeled as a point and referred to as a 
“viewpoint”.  A feature of an object is said to be 
visible, or not occluded, from the viewpoint if any 
segment joining a point of the feature and the 
viewpoint does not intersects the environment or the 
object itself. 
Although in general the problem is three-
dimensional, in some cases it can be restricted to 2D. 
This is for instance the case of buildings, which can 
be modeled as objects obtained by extrusion. 

For omni directional or rotating sensors, the 2D 
visibility can be modeled as an Art Gallery problem, 
which asks to position a minimum set of “guards” in 
a polygon. Unfortunately, the problem, as well as 
several of its variations, is NP-hard, and no finite 
algorithm, not even exponential, for locating a 
minimum set of guards is known. In addition, 
algorithms computationally feasible in the worst 
case and able to closely approximate the optimal 
solution are unlikely to exist (Eidenbenz et al., 
2001). However, this is an important practical 
problem and approximate algorithms 
computationally feasible and supplying satisfactory 
solutions in practical cases are sorely needed. 
In this paper, after discussing the available 
algorithms, we present a new approximate sensor 
positioning techniques. The algorithm is incremental 
and converges toward the optimal solution. It makes 
use a lower bound, specific of the polygon 
considered, for the number of sensors, and of rules 
for locally refining a starting approximate solution. 
This solution is provided by an integer covering 
algorithm, where each edge must be observed 
entirely by one sensor at least. The proposed 
technique can also take into account constraints as 
range and incidence. 
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2 ART GALLERY PROBLEMS 
AND EDGE COVERING 

The original problem, stated in 1975, refers to the 
surveillance, or “cover” of polygonal areas. The 
famous Art Gallery Theorem stated the upper tight 
bound ⎣n/3⎦ for the minimum number of “guards” 
(omni directional sensors) for covering any polygon 
with n edges, metaphorically the interior of an art 
gallery. The upper tight bound ⎣(n+h)/3⎦ holds for 
polygons with n edges and h holes. Many variations 
of the problem have been considered, and much 
work has been done for finding bounds in these 
cases. The decision problems related to the original 
problem (are k guards sufficient for covering a given 
polygon?), as well as those related to several similar 
problems, has been found to be NP-hard (Danner 
and Kavraki, 2002). No exact finite algorithm for 
locating a minimum set of sensors is known.  For 
further details, the reader is referred to the 
monograph of O’Rourke (1987), and to the surveys 
of Shermer (1992) and Urrutia (2000).  
Sensors positioning problems usually deals with 
observing, or covering, the boundary of objects and 
environment. Then in 2D we are content with 
observing the edges of a polygonal environment. We 
call this the Edge Covering (EC) problem, and the 
classic problem the Interior Covering (IC) problem. 
The EC problem and its relation with IC have been 
analyzed in Laurentini, 1999. For both EC and IC, 
the worst-case number of guards for polygons with 
and without holes is the same, but an optimum set of 
IC guards is not in general an optimum set of EC 
guards and vice-versa, and no simple rule, as adding 
or deleting guards, seems to exists for transforming 
an optimal solution of one problem in an optimal 
solution of the other. Also the decision problem 
associated to EC is NP-hard, since the classic proofs 
for polygons with and without holes also hold for 
edge covering (Laurentini, 1999). As for IC, at 
present no finite exact algorithm is known for 
locating a minimum set of EC guards in a given 
polygon.  
In addition, recent result (Eidenbenz et al., 2001) 
shows that no worst-case computationally feasible 
approximate algorithm able to find solution close to 
the optimum is likely to exist. These results apply to 
both EC and IC, as well as to others problems in the 
area. 
Finally, let us observe that the apparently continuous 
nature of EC (and IC) prevents putting the problems 
in the class NP. On this point, see also O’Rourke 
and Supowitz, 1983. 

In the following section we will discuss the 
approximate algorithms existing for EC. 

3 EXISTING APPROXIMATED 
EDGE COVERING 
ALGORITHMS 

Some approximate seasoned algorithms for IC are 
reported in Shermer, 1992. All these algorithms are 
polynomial. It can be easily seen that their 
performance in relation with the optimal solution 
can be as bad as possible (O(n) guards, where n is 
the number of edges, when O(1) are sufficient). 
These algorithms have not been implemented, and 
no experimental results comparing the average 
performances of these algorithms with the optimal 
solution have been presented. Anyway, we have 
seen that in general the optimal EC and IC covers 
are different.  
More recently, some attempt has been made for 
constructing practical sensor positioning algorithms. 
Kazakakis and Argyros (2002) have proposed a 
heuristic that divides the polygon into a number of 
convex polygons, each of which can be inspected by 
a guard with visibility range restriction. The 
algorithm has been implemented and some 
experimental results have been reported. Time 
performances are good, but the authors do not 
discuss how far are the solutions from optimum. 
The randomized approach (Danner and Kavraki, 
2002, Gonzales-Banos and Latombe, 1998 and 
2001), appears the main practical technique 
available.  We discuss here the most recent (not 
implemented) randomized algorithm of Gonzales-
Banos and Latombe (2001), which also takes into 
account range and incidence constraints. The 
algorithm is as follows. First, the authors observe 
that, given an optimal solution for locating the 
guards, perturbing the positions of the guards into 
sufficiently small areas does not affect optimality. 
This leads to a randomized approach, where a 
number of viewpoints are located at random in the 
polygon, hoping of locating some points sufficiently 
near the points of an optimal solution. The next step 
consists in dividing the polygon boundaries into 
cells such that each viewpoint sees exactly a set of 
these cells. Selecting a minimal set of points among 
the random points is equivalent to solve an NP-
complete set-covering problem. It is known that a 
greedy solution is polynomial, but has an 
approximation ratio bounded by (1+lgp), where p is 
the cardinality of the largest subset. It is clear that 
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this factor is not a strong guarantee of good 
approximation for polygons with many edges and 
holes, since p is O(m(n+h)), where m is the number 
of random point, which is assumed to be rather large 
and in any case much larger than n. However, a 
clever exploitation of the particular set structure 
makes it possible to reduce the problem within an 
approximation ratio of (1+ q), where q is 
O(lg(n+h)·lg(clg(n+h)) and c is the optimal size. 
The advantage is that q does not depend on the 
presumably large number of random points.  

Concluding, the authors obtain an algorithm 
polynomial in the worst-case, at the expense of the 
closeness to the optimal solution. In fact, also the 
improved approximation factor can be large for 
polygons with hundreds of edges and some tens of 
holes.  In addition, it is clear that a main problem 
with this algorithm is the density of the sampling, “a 
choice that is perhaps more a craft than a science” 
according to the authors themselves. An incremental 
algorithm could be developed adding new random 
points, but we have no idea of the closeness to 
optimum of the solution, and we do not know where 
is more convenient to add new samples. 

4 WHAT AN APPROXIMATE 
PRACTICAL ALGORITHM 
SHOULD DO 

The performance of a “good” or “practical” Art 
Gallery algorithm should be analyzed in terms of 
both running times and closeness to the optimal 
solution of the approximation obtained. Since we 
deal with a problem that we are not even able to put 
in NP, we cannot be too exigent regarding the worst 
case behavior, being satisfied with algorithms 
capable of running in practical cases, in reasonable 
times. Clearly, running time depends on the number 
of edges and on the shape of the polygon. We can 
assume that a reasonable choice to model many 
practical environments or 2D objects is to consider 
polygons with several tens, or some hundreds, of 
edges. As for shape, the algorithm should be tested 
with examples of real environments.   
Another desirable feature of a practical algorithm is 
the possibility of approaching the optimal solution 
by refining an initial approximation, at the expense 
of computation time.  For obtaining a balanced 
trade-off between precision and time, we should 
have: 

• some information about the quality of the 
approximation obtained at each step, which 

can be used to decide whether to stop the 
algorithm  

• an incremental algorithm, able to refine 
locally the solution of the previous step. 

The purpose of this paper is to present an algorithm 
that, to some degree, fulfills the previous 
requirements of a “good” or “practical” algorithm. 
Even if we are not able to discretize an apparently 
continuous problem, we propose an incremental 
algorithm, able to refine locally the solution, and we 
also provide a lower bound, specific of the case 
considered, that can be used to decide when to stop 
the incremental process. The algorithm starts with an 
initial approximation supplied by an integer edge 
covering algorithm.  

5 INTEGER EDGE COVERING 

The Integer Edge Covering (IEC) problem is a 
useful restriction of EC, requiring each edge to be 
entirely covered by at least one guard. For some 
practical task, observing entirely a feature of an 
object, usually modeled as an edge in 2D, could be 
preferable. In addition, for several not particularly 
tricky polygons the optimal unrestricted solution 
appears not too far from an optimal integer cover. 
For these reasons, integer covering is the starting 
approximation of our unrestricted edge-covering 
algorithm. A simple example showing the difference 
between EC and IEC is shown in Fig.1 

 
Figure 1: Two EC sensors cover the interior boundary of 
the polygon, but three IEC sensors are required 
 
Bounds for IEC have been discussed in Laurentini, 
1999. Regarding complexity, it is easy to see that the 
reductions of 3-SAT (O’Rourke, 1987) for polygons 
with and without holes also hold for IEC, since both 
reductions construct polygons where the edges are 
observed entirely by at least one guard. Thus, also 
the decision problem associated to IEC is NP-hard. 
The difference is that the restriction allows putting 
the problem in NP, so that it becomes NP-complete 
and finite algorithms are possible. In fact, the 
polygon can be divided into a set of non-overlapping 
zones, such that each point in each zone covers 
entirely the same set of edges. Then an hypothesis of 
solution consists in a finite string of characters that 
specifies a particular subset of these zones. 
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An algorithm for finding a set of zones where 
locating a minimum set of guards is reported in 
Laurentini, 1999. A modified version of this 
algorithm has been implemented in Bottino and 
Laurentini, 2004. The algorithm works for any 
polygonal environment (external coverage of 
multiple polygons, internal coverage of polygons 
with or without holes). Referring the readers to the 
original paper for details, the main steps of the 
algorithm are as follows: 
IEC Algorithm 
Step 1. Compute a partition Π of the viewing space 
into regions Zi such that: 

1. The same set Ei of edges is entirely visible 
from each point of Zi, ∀i. Actually, each 
region is also labeled with the partially 
visible edges and the number of occlusions. 

2. The regions Zi are maximum regions, that is 
Ei ⊄  Ej where Zj is any region contiguous 
to Zi 

Step 2. Select the dominant regions and the essential 
regions. A region Zi is dominant if there is no other 
region Zj such that Ei ⊂ Ej. An essential zone is a 
dominant zone that covers an edge not covered by 
any other dominant zone. 
Step 3. Find an optimum set of zones covering all 
the edges. This is a set covering problem restricted 
to the set of edges not covered by the essential 
zones, and to the subsets corresponding to the 
dominant zones that: a) are not essential; b) cover 
some edge not already covered by the essential 
zones. 
Steps 1 and 2 are polynomial (Laurentini, 1999); 
Step 3 is exponential in the worst case. However, in 
many cases the simplifications introduced by 
dominant and essential zones strongly reduce the 
complexity of the algorithm. Observe that the 
algorithm does not provide in general all the 
possible minimal sets of zones, since there could be 
solutions including non-dominant zones. However, 
this does not seems a serious drawback, since each 
non-dominant zone can be replaced by a dominant 
zone that covers some more edges, and multiple 
coverage in several practical cases is preferable, for 
instance in case of sensor failure. 

6 THE SENSOR POSITIONING 
ALGORITHM 

Integer edge covering provides a starting 
approximation, which can be incrementally refined 
for approaching the optimal unrestricted solution. 

For deciding if a solution is acceptable, we compute 
a lower bound LB(P) for the optimum number of 
sensors, specific of the polygon P considered.  If the 
starting solution is far from the lower bound, we can 
improve this solution by splitting some of the edges 
and re-applying the IEC algorithm. It is clear that 
this procedure converges toward the optimal 
solution, if computationally feasible. For reducing 
the computational burden, we also supply rules that 
tell us which edges must not be divided in order to 
reach the optimal solution. Summarizing, our sensor 
positioning algorithm works as follows. 
Given a polygon P, compute the lower bound LB(P) 
with the LBA algorithm described in section 6.2 
Apply the IEC algorithm and find an approximate 
covering. Compare the cardinality CA of the 
approximate covering with the lower bound. If they 
are equal, the solution is optimal also for the 
unrestricted problem. If (CA/LB(P))<1+ε, where ε is 
some predefined threshold, stop; otherwise: 
Apply the algorithm INDIVA, described in section 
6.3 for finding the edges that must not be divided, 
split the others and return to 2 

Actually, it could be necessary to stop the 
algorithm before reaching a satisfactory cover due to 
the computation time. In the rest of this section we 
describe the algorithms INDIVA and LBA. 

6.1 Integer and weak visibility 
polygons 

Both algorithms LBA and INDIVA make use of the 
concept of weak and integer visibility polygons of 
the edges (J. O'Rourke, 2002). Let us briefly recall 
their definitions: 
the Weak visibility polygon W(ei) of an edge ei is the 
polygon whose points see some points of ei 
the Integer visibility polygon I(ei) is the polygon 
whose points see entirely ei. An example is shown in 
Fig.2 

 
Figure 2: The integer and weak visibility polygons of the 
edge e 
 
Polynomial algorithms for computing weak and 
integer visibility polygons of an edge are described 
in the literature (Sack and Suri, 1990). In our case 
however, both polygons can be computed as a 
byproduct of the IEC algorithm.  If there are p zones 
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in the partition Π, computing the visibility polygons 
for all edges is O(pn). 

6.2 LBA, the Algorithm for Finding 
a Lower Bound 

LBA Algorithm finds a maximum subset of disjoint 
(not intersecting) weak visibility polygons W(ei). 
The cardinality of this set is LB(P). 
Since each weak visibility polygon must contain at 
least one sensor, no arrangement of EC sensors can 
have fewer sensors than LB(P). A simple example is 
shown in Fig.3, where the lower bound is 2. 
 

 
Figure 3: A maximum set of non-intersecting weak 
visibility polygons 
 
Computing the lower bound requires solving the 
maximum independent set problem for a graph G 
where each node represents the weak visibility 
polygon of an edge of P, and each edge of G 
connects nodes corresponding to intersecting weak 
visibility polygons. The problem is equivalent to the 
maximum clique problem for the complement graph 
G’ (the graph obtained by joining those pairs of 
vertices that are not adjacent in G). It is well known 
that these are NP-complete problems.  
However, we stress that exact branch-and-bound 
algorithms for these problems have been presented 
and extensively tested (Woods, 1997, Oestergard, 
2002), showing more than acceptable performance 
for graphs with hundreds of nodes. Then, we assume 
that computing LB(P) is computationally feasible for 
the practical cases considered. 

6.3 INDIVA, the Algorithm for 
Finding Indivisible Edges 

In this section we describe a set of rules for finding 
the indivisible edges of P. An edge is called 
indivisible if optimal sets of sensors exist such that 
edge is entirely observed by at least one sensor.   
Clearly, for approaching these optimal solutions we 
do not need to split these edges. The first two rules 
are as follows: 
Rule1. If W(ei) = I(ei), ei is indivisible. 
Rule2. If W(ei) ⊆ I(ej), ej is indivisible. 

Both rules follows from the fact that at least one 
sensor of any minimum set must be located in each 
weak visibility polygon, and then also in the integer 
visibility polygon satisfying one of the above rules. 
A simple example will show how to apply these 
rules, and that they can be powerful tools for 
simplifying the problem. Let us consider the 
polygon in fig. 2(a).  

 
Figure 4: In this case, the optimum EC and IEC covers are 
equal 
 
The weak visibility polygon of e2 is shown in (b). It 
is coincident (c) with the integer visibility polygon 
I(e2), and then for Rule 1 e2 is indivisible, and 
marked with a thicker line. In (d) it shown that I(e1)= 
W(e2), and then for Rule 2 also e1 is indivisible, as 
well as, for similar reasons, e4 and e5. As for e3, it is 
indivisible, since W(e3)= I(e3) (Fig.1 (e). Finally, in 
(f) it is shown I(e6). Since I(e6)⊃W(e3), also e6 is 
indivisible.  

Concluding, in this example the unrestricted 
minimal set of guards is that provided by the integer-
covering algorithm. The same result could have been 
obtained by computing the IEC solution, whose 
cardinality is equal to the lower bound LB(P). This 
also happens for any polygon of the family shown in 
(g), which is used for showing that the bound 
supplied by the Art Gallery theorem is tight.  
We stress that if one of previous rules can be applied 
to an edge, this edge is entirely observed by a sensor 
for any optimal solution. 
We have found three other rules for determining 
other edges indivisible for some optimal solution. 
They are based on the idea that for some edge e we 
can discard some parts of W(e), having lesser 
visibility of the boundary of P than other parts.  
Let us recall that the algorithm IEC divides P into a 
set of regions whose points share the same visibility 
condition of the boundary of P. In particular, each 
zone is labeled with: a) the edges seen entirely by 
each point of the region; b) the edges seen partially 
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with the number of occlusions. Let E(p) denote the 
points of the boundary of P seen by a point p, 
excluding points belonging to indivisible edges, 
which are fully observed by some other viewpoint. 
We say that a region R of W(ei) is the best region of 
W(ei)  if  for any point p∈R and any point q∈( 
W(ei)- R) it is E(p)⊇ E(q). It is clear that, if such 
region exists, any optimal solution with one 
viewpoint in W(ei)-R can be substituted by an 
optimal solution with a viewpoint in R. It follows 
that all the edges fully observed by R are indivisible. 
Then we get the following rule:  
Rule3: edges which are completely seen by any 
point belonging to the best region of W(e) (if it 
exists) are indivisible. 

 
Figure 5: Z3 is the best region of W(e1) 

 
As an example, consider the polygon of Fig. 5. By 
applying Rules 1) and 2) we find that edges e1, e2, e3, 
e5, e6 are indivisible. Consider W(e1). Region Z1 sees 
fully edges e1, e2, e3 and partially e4. Region Z2 sees 
fully edges e1, e2, e3, e4 and partially e6, which must 
not be considered since it has been already found to 
be indivisible. Then Z3 is the best region, since any 
point in it sees fully edges e1, e2, e3, e4 and e7. 
Concluding, we have found that also e4 and e7 are 
indivisible. 
The best point of W(e) is defined (if it exist) as the 
point po of W(e) such that E(po)⊇E(q) (excluding 
indivisible edges) for any other point q∈W(ei). If 
such a point exists, in any optimal solution a 
viewpoint belonging to W(ei) can be substituted by 
po. Then we get the following rule:  
Rule 4: An edge is indivisible if it is observed by the 
best point of W(e) 
Consider the example of Fig.6. 

                    (a)            (b) 
Figure 6: Point p is the best point of W(e1) (a). The zones 
where two optimal viewpoints can be located (b) 
 

We assume that a viewpoint lying on a vertex of P is 
able to see the edges converging at the vertex. This 
is justified by the fact that, excluding exceptional 
alignment conditions, p can be displaced in a region 
nearby without affecting the optimality. Using rules 
1 and 2 e1, e2, e3 are easily found to be indivisible.  It 
is clear that p, which sees entirely e1, e2, e3, e4, e10,  
and a part of e9 largest or equal to that seen by any 
other point  is the best point of W(e1). Then also e4 
and e10  are  indivisible. 
The full algorithm for this polygon works as follows. 
LB(P) is 2, as shown in Fig.3. Applying the IC 
algorithm we obtain 3 viewpoints. Since this is 
different from the lower bound, we apply rules 1, 2 
and 4 and find that only e9 could be divided. After 
splitting in two e9 we apply again the IC algorithm, 
and find two areas, containing the two best points p 
and p’ where the viewpoints can be independently 
located (Fig. 6(b)). The cardinality of the solution is 
equal to LB(P), and then the solution is optimal.  

 

 
Figure 7: The line L contains the best boundary points 

 
Let us observe that the definition of best point of a 
region W(ei) can be extended, excluding  from E(p) 
not only other indivisible edges, but also edges or 
parts of edges covered by other best points. This is 
an effective extension, as it will be shown by the 
second example in section 7. 
Finally, consider W(e1) in the case shown in Fig.7. 
Applying rules (1) and (2) we find that e1, e2, e3 are 
indivisible. However, we are not able to apply rules 
(3) or (4), since in W(e1) there is no best point or 
region according to the definition given. This 
depends on the fact that there is no point or region 
that sees a part of e6 larger then any other point. 
However, we observe that, for each point p∈W(e1), 
there is a point of the boundary line L that sees the 
same set of integer edges, and a larger part of e6. 
This means that any minimal solution with a 
viewpoint point inside W(e1) can be transformed in a 
minimal solution with a viewpoint lying on L. In 
these minimal solution the set of edges entirely 
observed is the set entirely observed by any point of 
L, in this case e1, e2, e3, e4, e7. Then also e4 and e7 are 
indivisible. We will call a line L the best boundary 
lines of W(e) if, for any point q∈W(e) there is a 
point p∈L such that E(p)⊇ E(q). We obtain: 
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Rule 5: An edge is indivisible if it is entirely 
observed by any point of the best boundary line (if it 
exists) 

7 TWO EXAMPLES 

First, let us apply our algorithm to a polygon taken 
from the paper (Gonzales-Banos and Latombe, 
2001) of Danner and Kavraki.  
 
 

Figure 8: LB(P) (left) and an optimal solution (right) 
 

 
Figure 9: In this case, the algorithm reaches in a few steps 
the optimal solution 
 
The cardinality of the maximum set of non-
intersecting weak visibility regions (shown on the 
left in Fig.8) is 9. Then LB(P) = 9.  
One of the minimum solutions provided by the IC 
algorithm is shown in Fig 8 on the right. Since the 
number of zones where to independently locate a 
minimum set of integer edge guards is 9, this is also 
an optimal solution of the unrestricted problem. 

In the second example (Fig.9), LB(P) is 5 (Fig.9(a) 
and the cardinality of the IC approximation is 7(in 
Fig.7(b) one optimal integer cover is shown). Rules 
(1), (2) and (4) determine the indivisible edges 
shown in Fig.9(c), and two best points of W(e1) and 
W(e5). Applying again rule (4) taking into account 
the edges and parts of edges (hatched in the figure) 
observed by the two best points, two other best 
points of W(e2) and W(e4) are found(Fig. 9(d)). 
Another application of rule (4) supplies the best 
point of W(e5) (Fig.9(e)). Concluding, all edges are 
indivisible, excluding e6 and e7. Splitting in two 
these edges and applying again the IEC algorithm, 
the solution shown in Fig.9(f) is found. Five sensors 
can be located anywhere in the five regions shown, 
and therefore solution is optimal.  

8 CONCLUSIONS AND FUTURE 
WORK 

We have presented a new art gallery sensor location 
algorithms. The algorithm starts with an 
approximate solution provided by an integer edge 
covering algorithm, since in many practical cases 
this appears not too far from the optimal solution. A 
lower bound for the optimal number of sensor is 
computed. If the cardinality of the solution is equal 
to the lower bound, the solution is optimal; if not, an 
optimal solution can be approached by a local 
refinement of the integer edge covering solution. A 
set of rules is provided for determining which edges 
could be split to approach the optimal solution. 
Some examples show how the algorithm works.  
Is the algorithm a “good” algorithm for practical 
cases, or, in other words, does it supplies in 
reasonable time’s solutions close to the optimum?  
For assessing its performance, we are currently 
implementing the full algorithm and looking for 
further rules for finding indivisible edges, as well as 
rules for splitting divisible edges. Then we will 
apply the algorithm to a number of 2D maps taken 
from real environments. 
A final remark. Our algorithm can easily take into 
account range and incidence constraints. For each 
edge e the constraints define a region C(e) of P 
where the viewpoint can be located. Applying the 
IEC algorithm, we must consider as candidates to 
cover an edge e only the regions, or their parts, 
belonging to C(e). 
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