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Institute of Information Theory and Automation

P.O.box 18, 182 08 Praha 8, Czech Republic

Keywords: Bayesian estimation, prior information, multiple-participant decision making.

Abstract: Efficient multiple participant decision-making relies on cooperation of participants. Partially, it is reached by
sharing knowledge. A specific but important case of this type is addressed here. Essentially, a participant
passes to its partner distribution on common data and partner uses it for correcting its Bayesian parameter
estimate.

1 INTRODUCTION

Decision making (DM) is the ultimate purpose of any
cognitive system serving at various scales and do-
mains: international, state or local-community lev-
els; particular technical, medical and societal orga-
nizations; individual human beings etc. Attempts to
optimize centrally the overall performance of a col-
lection of mutually interacting participants reach soon
the communication and evaluation complexity barri-
ers. Use of distributed DM methodologies is then the
only viable way towards desirable efficiency. Existing
solutions overcome the complexity barrier by exploit-
ing specificity of their application domains. Their
transfer to different domains is, however, expensive
in skilled manpower. None of them is able to serve as
a common domain-independent pattern and thus the
real need for applicable theory of distributed DM per-
sists.

Careful inspection of DM (Savage, 1954; Berger,
1985) identifies the Bayesian theory as a prime can-
didate. Practical consequence, relevant to this paper,
is that different subjects of distributed DM (partici-
pants) share a probabilistic information when cooper-
ating. Existing approaches to a combination of low
dimensional pdfs suffer from a significant ambigu-
ity, e.g. (Jiroǔsek, 2003; Meneguzzo and Vecchiato,
2004). Furthermore, these approaches can be hardly
integrated into the Bayesian framework. This moti-
vated a research whose part is presented in this pa-
per. Solution of a partial but important task – using
of probabilistically described knowledge of data pro-

vided by another participant for improving Bayesian
parameter estimation – is presented.

2 PROBLEM FORMULATION

A participant estimates an unknown finite-
dimensional parameterΘ determining the para-
meterized modelm(Ψt,Θ) ≡ f(yt|ψt,Θ) ≡
f(yt|ut, d(t − 1),Θ), wheref(·|·) is a conditional
probability density function (pdf). In it, the modelled
system outputyt depends on a system inputut and
past data historyd(t − 1) ≡ (d0, d1, . . . , dt−1),
dτ = (yτ , uτ ), via a finite-dimensional regression
vectorψt only. The data vectorΨt is coupling of
the modelled outputyt and of the corresponding
regression vectorψt. Prior information, labelledd0,
is attached to the observed sequenced1, . . . , dt−1.
The participant estimatesΘ in Bayesian way, i.e.,
evaluates the posterior pdf

f(Θ|d(t)) ∝ f(Θ)
t∏

τ=1

m(Ψτ ,Θ). (1)

The symbol∝ expresses equality without writing
the normalizing data-dependent proportionality fac-
tor. The prior pdff(Θ) ≡ f(Θ|d0) is related to the
posterior pdf by the above version of Bayes rule iff
the parameterΘ is unknown to the input generator,
i.e.,
f(ut|d(t− 1),Θ) = f(ut|d(t− 1)) (Peterka, 1981).
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Another participant is assumed to deal with phys-
ically the same datad(t) (possibly different real-
izations) and generate their joint pdff(d(t)) =
∏t

τ=1 f(dt|d(t − 1)) and evaluate marginal pdfs
M(Ψτ ) of data vectors. For simplicity of presenta-
tion, we assume that this function is time invariant.
The pdfsf(dt|d(t − 1)) can be, for instance, out-
put predictors obtained via Bayesian estimation and
prediction of a model, which differs fromm(Ψt,Θ).
This participant provides its knowledge ofM(Ψt) to
the former one. Another possibility is to interpret
M(Ψt) as an additional information provided by an
expert. Question arises how this information can be
used for correcting the posterior pdf ofΘ. An answer
to this question is the problem addressed within the
paper.

3 SUFFICIENT STATISTIC FOR
ANY PARAMETERIZED
MODEL

The Bayesian parameter estimation is described by
the Bayes rule (1). It can be rewritten as follows

f(Θ|d(t)) ∝ f(Θ) exp

[
t∑

τ=1

ln(m(Ψτ ,Θ))

]

=

= exp

[
∫ t∑

τ=1

δ(Ψ − Ψτ ) ln(m(Ψ,Θ)) dΨ

]

. (2)

The expression
∑t

τ=1 δ(Ψ − Ψτ ), determined by the
Dirac delta function, can be interpreted ast-multiple
of the “empirical” pdf on setΨ∗ of possible data vec-
torsΨ. Formally clean version is obtained by the cor-
rect interpretation of

∫
δ(Ψ−Ψτ )g(Ψ) dΨ as the lin-

ear functional assigning to a functiong(Ψ) its value in
Ψτ . The quotation marks at the term empirical distri-
bution stress that against the traditional assumptions
the involved data vectors are statistically dependent.

The presented form of the posterior pdf has an im-
portant consequence:the number of data records to-
gether with the empirical pdf of data vectors form a
sufficient statistic for estimation of any parameterized
model that deals with the data vectors{Ψt}. Further-
more,updating posterior pdff(Θ|d(t)) by other data
records, saydt+1, . . . , dt̄, is equivalent to adding suf-
ficient statistic corresponding todt+1, . . . , dt̄ to the
statistic

∑t
τ=1 δ(Ψ − Ψτ ).

4 MERGING DATA BASED
KNOWLEDGE

The observations made in the previous section deter-
mine the way to incorporate knowledge expressed by
M(Ψ) into the parametric estimation connected with
the modelm(Ψ,Θ). Taking informationM(Ψ) as a
pdf of, sayν, virtual observations, the sufficient sta-
tistic for the posterior pdff(Θ|d(t),M, ν) based on
both real and virtual observations is determined by
t+ ν data records with the pdf

1

t+ ν

t∑

τ=1

δ(Ψ − Ψτ ) +
ν

t+ ν
M(Ψ)

in the place of the empirical pdf. Note that the idea
of virtual data is quite common, e.g. (Kárńy et al.,
2001). For instance, Bayesian estimation with a con-
jugate prior pdf is often interpreted as estimation with
additional virtual data (determining the original prior)
and a uniform prior pdf.

Contrary toM(Ψ), the weightν assigned to the
informationM(Ψ) is not supposed to be given. Gen-
erally, it is subjectively assigned by the the participant
making the parametric estimation, and expresses the
weight it gives to the participant serving as an infor-
mation source.

Using this way, we get the parameter estimate that
respects both knowledge sources

f(Θ|d(t),M, ν) ∝ f(Θ) exp{ (3)
∫
[

t∑

τ=1

δ(Ψ − Ψτ ) + νM(Ψ)

]

ln(m(Ψ,Θ)) dΨ}

∝ f(Θ|d(t)) exp

[

ν

∫

M(Ψ) ln(m(Ψ,Θ)) dΨ

]

.

Remarks

1. In the proposed method, the informationM(Ψ) is
processed “data-like” in the following sense. Sup-
pose thatM(Ψ) is an empirical density fromν data
records, i.e.,M(Ψ) = 1

ν

∑ν

τ=1 δ(Ψ − Ψτ ), and
data vectorsΨ1, . . . ,Ψν arise from a sequence of
datad(ν). Then,

f(Θ|M,ν) = f(Θ|d(ν)).

2. An intuitive way to use informationM(Ψ) as ν
data records is to generateν random samples from
M(Ψ) and evaluate the posterior pdf with these
samples. For sufficiently largeν such posterior pdf
is expected to be close to the posteriorf(Θ|M,ν)
as the empirical distribution converges to the real
one. However, for smallν the posterior pdf based
on the random samples strongly depends on their
realization whilef(Θ|M,ν) is not influenced by
any randomness.
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3. The “merging” weights are controlled by the op-
tional scalarν > 0.

4. It is worth stressing that the functionM(Ψt) is to
be joint pdf of the outputyt and the regression vec-
torψt similarly as in the case of independentΨs.

5 EXAMPLES IN EXPONENTIAL
FAMILY

Let us consider a parameterized model in the expo-
nential family (Barndorff-Nielsen, 1978)

m(Ψ,Θ) = A(Θ) exp 〈B(Ψ), C(Θ)〉 , (4)

where the functionsA, B, C are known functions of
respective arguments.A(Θ) ≥ 0 is the scalar one,
B, C are vectorial functions of compatible dimen-
sions and〈B(Ψ), C(Θ)〉 is a functional linear in the
first argument.

Let us suppose that the functionM(Ψ) defines well
the expectation

V ≡
∫

M(Ψ)B(Ψ) dΨ. (5)

Then, the factor modifying the prior pdf has the con-
jugated form

g(Θ, ν, V ) ≡ A(Θ)ν exp 〈νV,C(Θ)〉 . (6)

If the prior pdf is also chosen conjugated one

f(Θ) =
g(Θ, ν̄, V̄ )

I(ν̄, V̄ )
, I(ν, V ) =

∫

g(Θ, ν, V ) dΘ,

(7)
then the posterior pdfs have the same fixed functional
form given byg(Θ, νt, Vt) with the statisticsνt, Vt
evolving as follows

νt = νt−1 + 1, Vt = Vt−1 +B(Ψt), (8)

ν0 = ν̄ + ν, V0 = V̄ + νV.

Thus, the externally supplied pdfM(Ψ) addsν and
V to the initial values of the statistics selected by the
participant that runs the parameter estimation.

If the DM task allows us to wait for collecting the
statisticsV̄t =

∑t

τ=1B(Ψτ ) + V̄ and ν̄t = t + ν̄
for some realization of data vectors, it is possible to
select the optimal weightνo by maximizing the cor-
responding posterior likelihood function

νo = argmax
ν

I(ν + ν̄t, V̄t + νV )

I(ν, νV )
, (9)

whereν̄t = t+ ν̄ andV̄t =
∑t

τ=1B(Ψτ ) + V̄ .
If we cannot wait, several competitive values of

ν have to be chosen and the corresponding posterior
likelihoods compared in recursive mode.

Normal ARX model is the most prominent example
of a dynamic model in the exponential family. It is
described by the parameterized model

m(Ψ,Θ) ≡ Nyt(θ
′ψt, r) (10)

=
1√
2πr

︸ ︷︷ ︸

A(Θ)

exp tr







ΨtΨ
′
t

︸ ︷︷ ︸

B(Ψt)

−1

2r
[−1, θ′][−1, θ′]′

︸ ︷︷ ︸

C(Θ)







︸ ︷︷ ︸

<·,·>

whereNy(µ, ρ) is normal pdf with meanµ and vari-
anceρ; the regression coefficientsθ and variance form
the unknown parameterΘ, tr(N) is the trace of matrix
N , and′ denotes transposition.

The marked correspondence with exponential fam-
ily shows that the moments needed in connection with
M(Ψ) are the non-central second moments of the data
vectorΨ

V =

∫

M(Ψ)ΨΨ′ dΨ. (11)

The updating (8), describing completely the posterior
pdfs in the conjugate Gauss-inverse-Wishart form,
can be shown to be algebraically equivalent to recur-
sive least-squares algorithm (Peterka, 1981). The in-
formation from the second participant simply mod-
ifies its initial conditions. Their careful choice is
known to influence substantially the transient behav-
ior of the algorithm. Often, it is vital, especially in
closed decision-making (control) loop.

Controlled Markov chain is another example of the
model describing well dynamic systems. It mod-
els discrete-valued outputs that depend on discrete-
valued regression vector by the table

f(yt|ut, d(t− 1),Θ) = m(Ψt,Θ) ≡ (12)

≡ Θyt|ψt = exp






∑

Ψ∈Ψ∗

δ(Ψ − Ψt)
︸ ︷︷ ︸

BΨ(Ψt)

ln(Θy|ψ)
︸ ︷︷ ︸

CΨ(Θ)






︸ ︷︷ ︸

<·,·>

whose entriesΘy|ψ form the unknown parameterΘ.
The parameter belongs to a subset (determined possi-
bly by some additional information) of the convex set

Θ∗ ≡
{

Θy|ψ : Θy|ψ ≥ 0,
∑

y∈y∗ Θy|ψ = 1
}

.

The externally supplied modelM(Ψ) simply as-
signs probabilities to various possible values ofΨ ∈
Ψ∗ and the factor modifying the prior pdf has the form

exp

(

ν
∑

Ψ∈Ψ∗

M(Ψ) ln(Θy|ψ)

)

=
∏

Ψ∈Ψ∗

Θ
νM(Ψ)
y|ψ .

(13)
This expression is proportional to the conjugate
Dirichlet pdf determined by the tableνM(Ψ) that
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can be interpreted as the number of occurrences of
the data vectorΨ. Choosing the prior pdff(Θ) in

the Dirichlet form∝ ∏Ψ∈Ψ∗ Θ
V̄y|ψ−1

y|ψ , the externally
supplied information increases it to the initial value
V0 = V̄ + νM . The posterior pdf is also Dirichlet
one given by the occurrence tableVt. It evolves start-
ing from the initial valueV0. The updating by the
observed dataVt = Vt−1 + B(Ψt) adds the number
of occurrences of the valuesΨτ = Ψ, τ ≤ t, to the
Ψth entry of the tableV0.

Again, importance of the prior knowledge can be
hardly over-stressed: the estimation of controlled
Markov chains is formally extremely simple but the
dimension of the occurrence tableV grows exponen-
tially with the cardinality of the setΨ∗. Consequently,
there is a lack of data in majority practical cases and,
moreover, their information content is as a rule insuf-
ficient.

6 CONCLUSIONS

The simple presented result is a quite powerful and
practical tool. Considering the parameterized model
m(Θ,Ψ) from the exponential family and a conju-
gate prior pdf, the posterior pdff(Θ|M,ν) remains
in the conjugate form as it is in “proper” Bayesian es-
timation. Evaluation of

∫
M(Ψ) ln(m(Ψ,Θ)) dΨ of-

ten reduces into evaluation of moments ofΨ. More-
over, a simulation model of a quite different nature
than the estimated one can be used for estimating∫
M(Ψ) ln(m(Ψ,Θ)) dΨ. In this case, the use of

M(Ψ) is often reduced into evaluation of sample mo-
ments ofΨ.

More complex models – probabilistic mixtures –
can be estimated by the proposed method using, e.g.,
a slightly modified quasi-Bayes algorithm (Kárńy
et al., 2005).

Physically motivated models, black box models of
much higher order than the estimated one, relation-
ships described by production rules stimulated by real
data in past etc. may serve as data-vectors sources.
In this way, model simplification and translation be-
tween various knowledge domains are addressed in a
justified, purposeful and simple way.

The choice of the weightν is an algorithmically
open problem. Its solution is, however, predictable:
Bayesian hypothesis testing and real data observed by
the participant should provide flexible universal solu-
tion.

Similarly, the case when information about some
entries ofΨt is only offered is unsolved. It is expected
that assignment the extension ofM to the setΨ∗ by a
very flat marginal on “non-reported” entries ofΨ will
solve this problem.

Even with this open problems pending, the pro-
posed “technology” is straightforward to pass un-
certain knowledge from one participant to another
one and thus to combine very different knowledge
sources.
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(2001). Quantification of prior information revised.
International Journal of Adaptive Control and Signal
Processing, 15(1):65–84.

Meneguzzo, D. and Vecchiato, W. (2004). Copula sensitiv-
ity in collateralized debt obligations and basket default
swaps.Journal of Futures Markets, 24(1):37–70.

Peterka, V. (1981). Bayesian system identification. In
Eykhoff, P., editor,Trends and Progress in System
Identification, pages 239–304. Pergamon Press, Ox-
ford.

Savage, L. (1954).Foundations of Statistics. Wiley, New
York.

ICINCO 2005 - SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL

232


