
CENTRALIZED AND DECENTRALIZED OPTIMISATION
TECHNIQUES FOR THE FLEXIBLE JOB SHOP SCHEDULING

PROBLEM

Meriem Ennigrou1 and Khaled Ghédira2

1 ur. SOIE, Stratégies d'Optimisation des Informations et de la connaissancE
IPEIM, Institut Préparatoire aux Etudes d'Ingénieurs – ElManar, 2092 El Manar 2 BP 244, Tunisie

2 ur. SOIE, Stratégies d'Optimisation des Informations et de la connaissancE
ENSI, Ecole Nationale des Sciences de l'Informatique, 2010 Campus Universitaire la manouba, Tunisie

Keywords: Multi-Agent System, flexible Job Shop, Scheduling, Tabu Search.

Abstract: This paper proposes two Multi-agent approaches based on a tabu search method for solving the flexible Job
Shop scheduling problem. The characteristic of the latter problem is that one or several machines can
process one operation so that its processing time depends on the machine used. Such a generalization of the
classical problem makes it more and more difficult to solve. The objective is to minimize the makespan or
the total duration of the schedule. The proposed models are composed of three classes of agents: Job agents
and Resource agents and an Interface agent. According to the location of the tabu search core, two versions
have been proposed. The first one places the optimisation method only on the Interface agent whereas the
second associates to each Resource agent its own optimisation process.

1 INTRODUCTION

In the later decades, extensive researches on
scheduling have been reported from both theoretical
and practical issues. Scheduling means allocating a
set of jobs to a finite set of resources over time while
satisfying a set of constraints. An important goal in
the scheduling function is to assure that the work is
completed as early as possible.

Among the most difficult scheduling problems,
we find the Job Shop Scheduling Problem (JSSP).
Finding an optimal solution for such problems in a
reasonable time seems to be very hard, in the
majority of cases, because of their high complexity.
In fact, this problem falls into the category of NP-
hard problems for which exact solving methods are
inappropriate since they explode with problem size.
However, approximate methods are more suitable
for such problems. The latter are either based on
local search techniques such as tabu search and
simulated annealing or on evolutive techniques such
as genetic algorithms and ant systems.

In this paper, we are concerned with an extended
class of the JSSP, namely the flexible Job Shop
(FJSP), to which we propose two Multi-Agent

models based on the tabu search optimisation
method. The objective is to minimize the makespan
or the total duration of the schedule.

2 THE FJSP

A JSSP consists in performing a set of n jobs {J1,
…, Jn} on a set of m resources {R1, …, Rm}. Each job
Ji, i=1,…,n, is composed of ni operations that must
be performed on the different resources according to
a predefined order, known as the job process
routing. This one characterizes the precedence
constraints existing between the operations of one
job. In addition, each operation has a processing
time known in advance and can be processed by only
one resource.

Furthermore, each job has to be achieved in a
temporal range defined by its release date, before
which the job cannot be started, and its due date,
before which the job must be completed. This
temporal range defines the temporal constraints of
that job. Moreover, a resource can perform only one
operation at a time, which corresponds to the

31
Ennigrou M. and Ghédira K. (2005).
CENTRALIZED AND DECENTRALIZED OPTIMISATION TECHNIQUES FOR THE FLEXIBLE JOB SHOP SCHEDULING PROBLEM.
In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Robotics and Automation, pages 31-36
DOI: 10.5220/0001176900310036
Copyright c© SciTePress

disjunctive constraints, and an operation cannot be
interrupted unless it is finished, i.e. no pre-emption
is allowed. A solution for the JSSP consists in fixing
a start time for each operation satisfying the set of
constraints.

FJSP, first introduced by (Nuijten & Aarts,
1996), is a generalisation of the above mentioned
problem, where each operation can be processed by
more than one resource and has consequently a
processing time depending on the resource used. A
solution consists then not only in sequencing the
operations on the resources and fixing them a start
time but also in allocating them to a resource likely
to achieve them. This problem is also NP-hard.

3 TABU SEARCH

The models we propose in this article are based on a
combinatorial optimisation technique, namely the
tabu search (TS) method, proposed by (Glover,
1986), which is a meta-heuristic based on the local
search principle. Beginning from an initial solution,
the local search consists to choose, at each iteration,
the best solution in the current solution
neighbourhood, even if it does not improve the
quality of the solution. A neighbourhood is
composed of all the solutions obtained by a simple
move on the current solution. These solutions are
named, then, neighbours of the current one. TS have
proved its power to handle JSSPs. Several
researches have used TS and good results have been
obtained. Among the approaches proposed for the
JSSP, the ones proposed by (Mastrollili &
Gambardella, 2000), (Brucker & Neyer, 1998) and
(Chambers & Barnes, 1996).

In order to escape local optima in which the
system can be easily trapped, TS uses a temporary
memorisation structure in which it keeps track of the
last visited solutions: the tabu list. In fact, a solution
is forbidden during a number of iterations equal to
the tabu list size. Then, the best solution among the
ones not forbidden is selected for the next iteration.

Although its efficiency in solving many difficult
problems, TS remains yet hardly adaptable to FJSP
because of the great number of parameters to define:

– initial solution,
– neighbourhood function,
– evaluation of the current solution,
– tabu list size, etc.

Later in this paper, we will describe briefly our
adaptation of the different parameters to the FJSP.
The next section presents the two multi-agent
models proposed and subsequently their global
dynamic.

4 MULTI-AGENT MODELS

Two Multi-Agent models have been proposed for
solving FJSP. The first one consists in centralizing
the optimisation process in a unique agent
responsible for finding the optimal solution in
cooperation with the remainder of the agents which
are responsible for generating successive feasible
solutions at each step of the process. Whereas, the
second one distributes the optimisation process
between a collection of agents cooperating together
in order to find the best possible solution.

Since scheduling problems involve two sorts of
constraints: the ones concerning the jobs, namely
precedence and temporal constraints, and those
concerning the resources, namely disjunctive
constraints, both Multi-Agent models proposed in
this paper are then composed of two agent classes:
Job Agents and Resource Agents responsible for the
satisfaction of the two classes of constraints. In
addition, a third agent class, containing a single
agent, the Interface agent, is added to both models.
The degree of importance of the latter agent in the
solving process differs from the first model to the
second. In fact, in the first model, it contains the
core of the TS method. However, in the second
model, its role is limited to the interface between the
agents and the user. The optimisation process, in this
case, is distributed among the Resource agents.

Each agent in these models has its own
acquaintances (i.e. the agents that it knows and with
which it can communicate), a local memory
composed of its static and dynamic knowledge and a
mailbox in which it stores the messages received
from the other agents. In the remaining of this
section, we describe briefly each agent class in both
models.

4.1 Centralized Optimisation Model

4.1.1 Job Agent

The acquaintances of Job agent are composed of
Resource agents that are likely to fulfil its operations
and of the Interface agent. Its static knowledge
includes its release and due dates, its process routing
and the different processing times of its operations
according to the resources. Whereas its dynamic
knowledge comprises the start times of its operations
and the current resources to which they are
allocated.

The Job agent is satisfied when all its operations
have been affected to potential resources and when
all its constraints are not violated and in this case it
does nothing. Otherwise, it is unsatisfied and it tries

ICINCO 2005 - ROBOTICS AND AUTOMATION

32

to assign an operation to an eligible resource in
cooperation with its acquaintances.

4.1.2 Resource Agent

The acquaintances of Resource agent are composed
of all Job agents whose operations are likely to be
fulfilled by it and of the Interface agent. Its static
knowledge encloses the list of operations that it can
perform along with their processing times. While its
dynamic knowledge is composed of the operations
currently assigned to it and their start times.

The Resource agent is satisfied when no
overlapping conflict exists between two operations
assigned to it and in this case it does nothing. If not,
it is unsatisfied and it tries to solve these conflicts by
sending one of the conflicting operation to its Job
agent in order to replace it elsewhere.

4.1.3 Interface Agent

The Interface agent acquaintances are composed of
all the agents existing in the system. Its static
knowledge contains:

– The maximal number of iterations allowed
– The tabu list size

Its dynamic knowledge is composed of:
– The tabu list
– The current solution and its makespan
– The best solution encountered so far and its

makespan
– The current number of iterations performed.
As mentioned before, the Interface agent, in this

model, contains the core of the optimisation process.
The Interface agent remains unsatisfied until the
current number of iterations exceeds the maximal
number of iterations allowed. Otherwise, it delivers
the best solution to the user.

4.2 Distributed Optimisation Model

4.2.1 Job Agent

The acquaintances of Job agent are composed of all
Resource agents and the Interface agent. Its static
knowledge includes its release and due dates, its
process routing and the different processing times of
its operations according to the resources. Whereas it
has no dynamic knowledge.

The Job agent is satisfied when all its operations
have been assigned, and in this case it does nothing.
Otherwise, it is unsatisfied and it tries to assign an
operation to an eligible resource in cooperation with
its acquaintances.

4.2.2 Resource Agent

A Resource agent can communicate with all the
other agents existing in the system. Its static
knowledge encloses the entirety of the information
concerning the operations; i.e. their processing
times, their potential resources, their predecessors
and successors according to their job process
routings, etc.; along with the maximal number of
iterations allowed, the number of iterations allowed
between two successive improvements and its own
tabu list size. While its dynamic knowledge is
composed of its tabu list, its current solution and its
cost, the best solution that it has encountered so far
and its cost, the number of iterations that it has
performed, the number of iterations since the last
improvement made and a list of the best solutions
reached by the other Resource agents.

The Resource agent is unsatisfied while the
number of iterations that it has performed is less
than or equal to the maximal number of iterations
allowed. Otherwise, it is satisfied and it does not
anything.

4.2.3 Interface Agent

The Interface agent acquaintances are composed of
all the agents existing in the system. This agent has
no static knowledge. However, its dynamic
knowledge is composed of the list of the best
solutions encountered by the Resource agents and
the global best solution and its cost.

It is satisfied when all the other agents are
satisfied and in this case it delivers the best solution
found to the user. Otherwise, it is unsatisfied and it
does nothing.

In the remaining of this paper, we present the
Multi-Agent global dynamic in the two cases of
initial solution and optimal solution determination.

5 MULTI-AGENT GLOBAL
DYNAMIC

In this section, we describe the global dynamic of
both Multi-Agent systems proposed for the FJSP.
Two main phases compose this global dynamic:
initial solution determination phase and optimisation
phase based on TS. The former is similar in both
models, whereas the latter differs from the
centralized version to the decentralized one. The
following section describes the initial solution
generation process used for generating the initial
solution from which the optimisation starts. Next,
the optimisation processes of both models will be
described.

CENTRALIZED AND DECENTRALIZED OPTIMISATION TECHNIQUES FOR THE FLEXIBLE JOB SHOP
SCHEDULING PROBLEM

33

5.1 Initial solution determination
phase

The initial solution is the result of agent cooperation.
Initially, the Interface agent creates the different Job
and Resource agents and sends the message
“Determine_Initial_Allocation(Jk)” to Job agents in
order to find an initial allocation for all their
operations. The job agent selects, consequently, the
less loaded resource among the potential resources
and a start time d such thatFor the first operation of a
job (according to the process routing) d is equal to
the release date of the job. Otherwise, d is equal to
the finish time of its precedent operation.

Such an initial allocation satisfies all precedence
and temporal constraints. However, it remains to
verify the disjunctive constraints. Each time an
operation is assigned to a resource, its Job agent
informs the concerned Resource agent through the
message “Operation_allocated(Rl, Oi, d)”. At the
receipt of this message, the Resource agent Rl checks
its satisfaction. In the case it is unsatisfied, i.e. there
is an overlapping conflict between this operation and
another operation that has been already affected to it,
it tries to find another satisfying location on it which
start time d1 is the closest possible to d. If such a
location exists, then it informs the Job agent through
the message “Operation_modified(Jk, Oi, d1)”.
Otherwise, it ejects the operation and sends it to its
Job agent in order to search for another location
through the message “Operation_refused(Jk, Oi)”.
At this moment, the Job agent sends the operation to
another potential resource.

The process above-mentioned will be repeated as
many times as the operation is not yet assigned and
for a predefined number of iterations. Once this
threshold is exceeded, namely the Job agent has not
found any location on a potential resource, it will
request one of the possible resources to create a
location through the message “Create_location(Rx,
Oi)”. Such a location must satisfy all problem
constraints. Similarly, if the Resource agent fails in
creating such a location, it ejects the operation and
sends it to its Job agent to contact another Resource
agent, and so on. This process stops when a second
predefined threshold has been exceeded.

5.2 Optimisation process

5.2.1 Centralized Optimisation Process

As mentioned before, in this first approach the core
of the TS is implanted on the Interface agent. The
latter generates the neighbourhood of the current
solution and then chooses the best non-tabu move

contained in it using its evaluation mechanism. This
best move is then sent to the other agents in order to
generate the feasible solution obtained by applying
this move on the current solution, and so on.

In the following, we describe the parameters of
the TS used in this model.
Neighbourhood function
A tabu search-based approach complexity depends
essentially on (1) the current solution neighbourhood
size and on (2) the evaluation scheme of this
neighbourhood with which the best solution will be
determined. It seems then interesting to reduce the
size of the neighbourhood in order to reduce
problem complexity.

To present the neighbourhood function of the
centralized optimisation process, we need first
define the notion of critical path. A critical path of a
solution is the path which length is equal to the
schedule one and that is composed of operations
related to by either a precedence constraint, or a
disjunctive constraint.

A critical operation is an operation which
belongs to a critical path. The neighbourhood of a
solution is obtained by two types of moves: Switch
of two adjacent critical operations achieved by the
same resource or migration of a critical operation on
another potential resource.
 Neighbourhood evaluation
The best non-tabu neighbour belonging to the
current solution neighbourhood will be selected for
the next iteration. Hence, all neighbours must be
evaluated in order to determine the best one.
However, a global evaluation, i.e. computation of all
start times of all operations, of each neighbour will
need a considerable time. For this reason, only a
subset of operations will be taken into account and
to which start times will be redefined. These
operations are effectively concerned by the move
executed.
Optimisation process
At the end of the first phase detailed earlier, the
Interface agent receives the initial solution and
launches then the second phase based on TS. The
following algorithm presents the core of the
optimisation process implanted in the Interface
agent.

1. tabu_list ← ∅
2. nb_iter ← 0
3. current_sol ← initial_solution
4. best_sol ← current_sol
5. While nb_iter <= nb_iter_max do
6. iter_diversif ← 1
7. While iter_diversif<=iter_max_diversif &
 nb_iter <= nb_iter_max do
8. path ← critical_path (current_sol)
9. neighbH ← determine_ neighbH(path)

ICINCO 2005 - ROBOTICS AND AUTOMATION

34

10. best_N←determine_best_N(neighbH)
11. tabu_list←add_in_tabu_list (best_N)
12. current_sol ←perform_move

 (current_sol,best_N)
13. if cost(current_sol)<cost(best_sol) then
14. best_sol ← current_sol
15. iter_diversif ← 0
 End if
16. nb_iter ← nb_iter +1
17. iter_diversif ← iter_diversif +1
 End while
18. Diversification
 End while

Once the best neighbour among the
neighbourhood of the current solution has been
chosen, the Interface agent sends the operation
concerned by the move chosen to its Job agent in
order to inform it about the move to perform. At the
receipt of this operation, the Job agent sends it to the
Resource agent Rl in order to find a location starting
at a date d. The date d is equal to the finish time of
the predecessor of Oi. The same process involving
the cooperation between the agents, described in the
first phase, will then be repeated in the case that this
assignment leads to a conflict on resource Rl,
otherwise, no changes are made.

When the number of iterations between two best
solutions exceeds a predefined threshold
“iter_max_diversif”, a diversification phase is
performed. The latter consists in varying the search
in order to explore new regions of the search space.
In our approach, such a phase is characterized by
replacing some operations selected randomly. An
operation is replaced on one of its potential
resources selected also randomly.

5.2.2 Decentralized Optimisation Process

In this approach, we have distributed the
optimisation process among the Resource agents.
Each Resource agent will, from now on, have its
own optimisation process and its individual
parameters of its TS. The Resource agents will send
mutually the best solutions encountered in order to
help each other to diversify their search process.

In the following, we describe the parameters of
the TS used in this model.
Neighbourhood function
The neighbourhood of a current solution in a
Resource agent is obtained only by switching two
operations achieved by this resource or by
transferring an operation currently affected on this
resource to another potential resource.
 Neighbourhood evaluation
The best non-tabu neighbour belonging to the
current solution neighbourhood will be selected for

the next iteration. The subset of operations that will
be concerned and to which start times will be
recomputed is the same as defined for the first
version.
Optimisation process
Once the initial solution has been determined, the
Interface agent sends it to each Resource agent in
order to start its local optimisation process. The
Resource agent determines then, the neighbourhood
of the current solution. After evaluating the
neighbourhood, the Resource agent chooses the best
non-tabu neighbour (best_N). When no non-tabu
neighbour exists, the Resource agent continues its
process from a solution already sent by another
Resource agent and which has been stored in the list
of best solutions (list_best_solutions). In the case
that the latter is empty, a diversification phase will
take place. When the neighbour is chosen, the move
will be accomplished and the new solution will be
obtained. In the case that the new current solution
improves the best solution (best_sol) encountered so
far, the Resource agent sends a message to the other
Resource agents in order to add this solution to their
lists of best solutions. When the number of iterations
between two best solutions exceeds a predefined
threshold “iter_max_diversif”, a diversification
phase is performed. The following algorithm
presents the core of the optimisation process
implanted in the Resource agent.
1. tabu_list ← ∅
2. nb_iter ← 1
3. current_sol ← initial_sol
4. best_sol ← current_sol
5. While nb_iter <= nb_iter_max do
6. iter_diversif ← 1
7. While iter_diversif <= iter_max_diversif
 & nb_iter <= nb_iter_max do
8. neighbH← determine_neighbH(current_sol)
9. best_N← determine_best_N(neighbH)
10. While best_N = nil
 & list_best_sol is not empty do
11. alea←random_selection(list_best_sol)
12. neighbH← neighbH ∪ {alea}
13. tabu_list ← ∅

 End while
14. If best_N <> nil then
15. tabu_list←add_in_list_tabu (best_N)
16. current_sol ← perform_move

 (current_sol, best_N)
17. If cost(current_sol) < cost (best_sol) then
18. best_sol ← current_sol
19. iter_diversif ← 1
20. loop on Resource agents Ri
21. send_best_sol(Ri,best_sol)

 End loop
 End if

 Else

CENTRALIZED AND DECENTRALIZED OPTIMISATION TECHNIQUES FOR THE FLEXIBLE JOB SHOP
SCHEDULING PROBLEM

35

22. current_sol← Diversification(current_sol)
23. iter_diversif ← 1
24. tabu_list ← ∅

 End if
25. nb_iter ← nb_iter+1
26. iter_diversif ← iter_diversif+1
 End while
27. current_sol ← Diversification(current_sol)
28. iter_diversif ← 1
29. tabu_list ← ∅
 End while

6 EXPERIMENTATION

Some experiments have been made on various
benchmarks defined by (Chambers & Barnes, 1996),
(Dauzerre & Paulli, 1997), etc. These benchmarks
have a number of jobs varying in the set {10, 15,
20}, the number of resources in the range [5, 20], the
number of operations per job in the range [5, 25] and
the number of potential resources per operation in
the range [1,3]. Consequently, the benchmarks
considered have a total number of operations
ranging in [50, 500].
The parameters used in the TS of each Resource
agent are the following:
− Tabu list size varying in {8,10,15,20,30} for the

centralized process and in {8,10} for the
distributed one.

− Total number of iterations nb_iter_max fixed to
1000 in the centralized approach and to 300 in the
distributed one.

− Number of iterations between two diversification
phases varying in {250,300,350} for the
centralized process and in {20,40} for the
distributed one.
Table 1 presents the results obtained by both

approaches for some instances among the
benchmarks mentioned earlier as same as the lower
and the upper bounds (LB and UB) presented in the
literature for the same instances.

Table 1: Results for Lawrence & al. instances
Benchmark LB UB Centralized

process
Distributed

process
la01 609 609 620 662
la02 655 655 666 704
la03 550 554 575 596
la04 568 568 581 675
la05 503 503 503 541

7 CONCLUSION

In this article, we have presented two Multi-Agent
approaches for solving the FJSP. These approaches
are based on the TS. The Multi-Agent systems
proposed are composed of three agent classes: Job
agents, Resource agents and an Interface agent. In
the first approach, the core of the TS is implanted in
the Interface agent and the other agents cooperate in
order to generate a feasible solution from the best
neighbour of the current solution. In the second
approach, each Resource agent has its own TS and
the Resource agents send mutually their best
solutions encountered. Some experiments have been
made on a plenty of benchmarks. The results in both
approaches show that the solution provided is close
to a range defined by the lower and the upper
bounds given in the literature.

REFERENCES

Brucker, P. & Neyer, J. , 1998. Tabu-search for the multi-
mode job-shop problem. OR Spektrum 20, 21-28.

Chambers, J.B. and Barnes, J.W., 1996. Flexible Job Shop
scheduling by tabu search. Graduate program in
Operations Research and Industrial Engineering, The
university of Texas at Austin, Technical Report series,
ORP96-09.

Dauzerre-Peres, S. and Paulli, J., 1997. An integrated
approach for modeling and solving the general multi-
processor job shop scheduling problem using tabu
search. Annals of Operations Research 70: 281-306.

Glover F., 1986. Future paths for Integer Programming
and Links to Artificial Intelligence,.Computers and
Operations Research, 5:533-549.

Mastrolilli M., Gambardella L.M., 2000. Effective
Neighborhood Functions for the Flexible Job Shop
Problem. Journal of Scheduling, Volume 3, Issue 1.
Pages:3-20.

Nuijten W., Aarts E., 1996. A computational study of
Constraint Satisfaction for multiple capacitated Job
Shop scheduling. European Journal of Operations
Research, 90(2): 269-284.

ICINCO 2005 - ROBOTICS AND AUTOMATION

36

