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Abstract. In this paper a new iterative construction algorithm for local model
networks is presented. The algorithm is focussed on building models with sparsely
distributed data as they occur in engine optimization processes. The validity func-
tion of each local model is fitted to the available data using statistical criteria
along with regularisation and thus allowing an arbitrary orientation and extent
in the input space. Local models are consecutively placed into those regions of
the input space where the model error is still large thus guaranteeing maximal
improvement through each new local model. The orientation and extent of each
validity function is also adapted to the available training data such that the de-
termination of the local regression parameters is a well posed problem. The reg-
ularisation of the model can be controlled in a distinct manner using only two
user-defined parameters. Examples from an industrial problems illustrate the ef-
ficiency of the proposed algorithm.

1 Introduction

Modeling and identification of nonlinear systems is challenging because nonlinear proc-
esses are unique in the sense that they may have an infinite structural variety compared
to linear systems. A major requirement for a nonlinear system modeling algorithm is
therefore universalness in the sense that a wide class of structurally different systems
can be described.

The architecture of local model networks is capable of fulfilling these requirements
and can therefore be applied to tasks where a high degree of flexibility is required. The
basic principles of this modeling approach have been more or less independently de-
veloped in different disciplines like neural networks, fuzzy logic, statistics and artificial
intelligence with different names such as local model networks, Takagi-Sugeno fuzzy
models or neuro-fuzzy models [1-5].

Local model networks possess a good interpretability. They interpolate local mod-
els, each valid in different operating regions, determined by so-called validity functions.
Many developments are focused on the bottleneck of the local model network which is
the determination of these subdomains or validity functions, respectively.

One important approach is Fuzzy clustering as presented in [6, 1, 7, 8]. An important
issue in this field is the interpretability of the validity functions, for example as operating
regimes. Recent developments can be found for example in [9, 10].
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Another development is the local linear model tree, LOLIM{IL]. It is based
on the idea to approximate a nonlinear map with piece-wrssali local models. The
algorithm is designed such that it systematically biseeatsitpns of the input space.
Local models that do not fit sufficiently well are thus replhtg two or more smaller
models in the expectation that they will fit the nonlineaggdrfunction better in their
region of validity.

In the practical application that motivated this work thecamt of data available
for identification is limited and the distribution of the dah their input space is sparse
[12]. This imposes a limit on the network construction aition and it can lead to the
situation that many local models are built where much feweunla be sufficient. Also,
the sparseness of the input data gives rise to a more or lézsated regularization
that can be handled even by inexperienced users. The locsImetwork construction
algorithm presented in this paper can be seen as a mixtutassical fuzzy clustering
technigues and the LOLIMOT construction algorithm. Thespre clustering algorithm
takes into account the spatial distribution of the data éitiput space and the prospec-
tive shape of the target function. The extent of the local eigdthe input space and its
orientation are determined such that maximal statistioakistency/compliance with
the sample data is achieved along with a spatial distributiothe data that yields a
well conditioned problem.

The efficiency of the training algorithm is thus significgniticreased resulting in
less computational effort and fewer local models.

2 Algorithm Description

Fig. 1 illustrates the architecture of a local model netwd&#ch local model (denoted
as LM;) takes the input vectos = [u; us ... u,]’ to compute its associated
validity function @; and its local estimatior; of the nonlinear target functiofi(w).
The aggregate network output is the sum of all local modgdwisty); :

m

Glu) = i(u)ji(u,6;) (1)

e,

Here, 0, is a vector containing the parameters of the local model haddcal model
output is generated from andé;.
The structure of the validity functios; was chosen as

m

bi(u) = exp (—[(u - z)" Ai(u — 2z)]") - T] (1-Br(u) )

k=i+1

The vectorz; contains the location of the current local model centerjs a sym-
metric and positive definite matrix that determines therdation and extent of the va-
lidity function in the input space and the exponenis a shape factor that determines
the flatness of the validity function and thus also the degfeserlap between different
local models. In the given examples this factor was set tofdrther discussion on the
choice ofx follows.
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Fig. 2. Shape and hierarchy of validity functions

The structure of eq. (2) shows that every validity functisimitally an exponential
function with ellipsoidal contour lines. The product in @ps all subsequent validity
functions from this original function, see Fig. 2. This at®has the following advan-
tage: All subsequent local models are set into domains ofriiet space, where the
preexisting model is insufficient. Eq. (2) ensures the damde of the new local mod-
els in such domains. In Fig. 2 the situation is illustratedd&dwo-dimensional input
space where a small domain is clipped from an originallypstidal validity function.

The structure of (2) by iteself does not guarantee that ¥slidnctions yield a
partition of unity. For that purpose the validity functioage normalized which is not
explicitly oulined here for the sake of brevity.

The overall quality of the network output is assessed eitlyethe R? statistics or
by the > _, statistics as outlined in [13]. Th&?, , statistics inherently describes the
generalization quality of the model.

2.1 Training procedure

The local model network construction algorithm consistafouter loop that deter-
mines the location, extent and orientation of each localehadd a nested inner loop
that optimises the parameters of the local model:

1. Start with an initial model:The initial model can either be a global model that
covers all the available data or an "ordinary” local modetlascribed below.
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2. Set the next local moddFind the data point with the worst output error or predic-
tion error. Choose the location of this data point asaadidatefor the next local
model. Design the orientation and extent of the new modéi sat it meets sta-
tistical compliance criteria with the sample data in thdoegf its validity. This
procedure will be described in detail in the next section.

3. Compute the local model parameters and the associateslistd parameters that
are necessary for the computation of prediction intervals

4. Test for ConvergenceThe performance criteri®? and 2, _, for the network out-
put are computed. Once they have reached or exceeded tieiination values the
algorithm stops. Also, if no further improvement can be acéd the tree construc-
tion is stopped. Otherwise the algorithm proceeds with &tefespecially in the
case when the training data are subject to strong noiserlolistoe it is important
that the training algorithm is controlled by a useful regisiation factor. Otherwise,
the construction algorithm would create smaller and eveallsmlocal models to
improve the overall fit. In our case this is prevented by medr®nfidence levels
as will be described in detail in the next section.

After the local model network construction algorithm hasstied to place local
models each model undergoes a final examination for its ibomitvn to the overall
network output. If it turns out that a certain model does mmttdbute significantly
anymore because it has been replaced by other models totagtesat it is removed.

3 Local Model Design

3.1 Local Mode Structure

Every local model roughly consists of two parts: Its vajiditinction @;(w) and its
model parameter8;. The outputy; of a local model at a poin& in the input space is
chosen as

gi(u) = " (u) - 6;. 3)

Here,z” (-) represents a row vector of regressor functions which carnbsen ar-
bitrarily. The advantage of the structure of (3) lies in thetfthaty; depends linearly
on the parametem®;. Therefore, least-squares techniques can be applieddwrcibm-
putation. It remains to determine suitable regressor fanstfor 7 (-) which will be
outlined in section 3.3.

3.2 Determination of the validity function

In the presence of noise it is desirable that every local rinsiteuld have optimal sta-
tistical significance. The algorithm presented in the sktakes into account both the
spatial distribution of the data and the expected shapeeofatget function and how
well it can be modeled by the given regressors. In practit@ons both the effect of
noise and the prospective shape of the target function daeown and the presented
clustering approach turned out to be a reliable compromise.
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1. The selection of a center "candidate; of a new local model is based on the
estimation erroe; = y; —g(u;). Herej(u;) is the model output from the network
at it's current state wheh— 1 models have already been built:

i—1

I(ug) =Y Br(uy)ie(uy, 0r) (4)

k=1

Givenn data records:; for model training the new center candidate is chosen as
the data record where the output error is maximal:

Zicand = Wj,, With j,, = arg max||e;|| (5)
This selection ensures that a new local model is set in treevanere it is needed

most.

2. Next, an initial set of neighbouring training data is airo$o compute an "initial”
regression model. The minimum amount of data necessanhi®irtitial model
is determined by the requirement that the regression matust have maximum
rank which depends both on the regressor functions and ospttél distribution
of the data. Next, the model statistics of the regressionahack computed (see
sec. 3.4) and a check is performed whether the initial datéiesewithin a pre-
scribed prediction interval corresponding to a confideewgell. If this is not the
case the iteration terminates and the algorithm proceetistié computation of
the parameters of the validity function. Typically, the fidance levek: is chosen
between 90% and 99.9%.

3. Otherwise, further training data points in the vicinifyzq ..,q are added succes-
sively and the initial regression model together with theleistatistics are adapted
to these data using recursive least squares techniquessstepiis repeated as long
asa % of the selected training data lie within the predictioremal. Thus it is
ensured that the local model size and shape corresponds shdpe of the target
function and the noisyness of the data.

4. Once training data have been selected in this way theiritition in the input
space is used to determine the actual center along with Hgesind extent of the
validity function.

Figures 3 and 4 give an example for a nonlinear rfigp : R — Randa = 97%.
The training data are represented by dots. Figure 3 depi¢iaitial” regression model:
The center candidate was chosen:as,,q = 0 for this illustrative example, all data
points in the interval: € [0;0.17] were selected for the regression. The dashed curves
represent the boundaries of the 97% prediction intervglifei 4 depicts the "final” sit-
uation: Additional training data points had been added! @inglly about 97% of the
selected data lie within the boundaries of the 97% confidémeeval. The resulting
validity function which was added to the figure for claritytemds from 0.1 to 0.8 hav-
ing its maximum at 0.4. Figure 5 illustrates the final sitoatfor o« = 99.99%. The
increased confidence lewelresults in larger confidence intervals and consequently the
validity function now has a greater extent. It can also begbkat in this example the
shape of the nonlinearity has a much greater influence on titkelsize than in Figure
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4. Figure 6 contains the same m#fr), however, the influence of noise was drasti-
cally reduced. Altough the confidence level is stilbat99% the extent of the validity
function is now significantly smaller. From these examplé®tomes obvious that the
confidence level serves as an excellent regularisation parameter that atitratty
adapts the local models to the noise corruption of the mgidiata and to the regressor
functions.
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Fig. 6. Final local model withoe = 99.99% and

Fig. 5. Final local model withoe = 99.99% .
less noise

It remains to determine the nonlinear parameters of thelityaliunction from the
training data selected in the manner described abovell,gtbe a matrix containing
all these data records including the center candidatée. every row vector olU s,
contains the coordinate vectat of a selected data point.

Then, the actual center is obtained by taking the center afityr of the data in
Usel:

z; = mean{U ;) (6)

where meaft) takes the mean value over every column of its argument. Tiualac
center is thus not the initial center candidate but the ceaftgravity of all chosen data
points. This has the advantage that the algorithm is lessita@nto outliers in the data
set.
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The matrixA; is computed by
Ai =7 [COV(Usel)]_l (7)

where coy-) denotes the empirical covariance matrix. This approackisrt from [14]
where it was applied for the design of ellipsoidal basis fiomcnetworks. The principal
orientation of the new validity function is thus determing [cov(U ,;)]~* and its
extent in the input space is controlled hyThe latter is chosen such thaf is still 0.9

at the data point itV ;.; which is located most remote from the new centerThus, it

is ensured that there are actually enough data points blafiar parameter estimation.
Besidesy, both~y and the shape parameteconstitute a second means of regularisation
for the algorithm. The larget is chosen the smaller the overlap between single local
models will be. Thus: directly controls thdocality of the models. This does play an
important role in the determination of covariances as vélldutlined later. The factor

~ is directly related to the choice af and just has to ensure the LS-problem is well
posed as stated earlier. Consequently, the confidencedeusd ~ are used to tune the
training algorithm.

3.3 Computation of the local model parameters

As already mentioned earlier the output of each local maglebimputed through the
regression model (3). It remains to determine suitableession functions:” (u). In
general, there is no "optimal” solution that suits all pbssinonlinear problems. The
LOLIMOT-Algorithm [11] features linear models and in theegent application the
regressor functions were chosen as quadratic polynomials.

Let X denote a matrix constructed from the regression vector ofteaining data
records:

xT (ul) @i(ul) 0 0
LBT(’U,Q) 0 @i(’u,g) s 0

X = : and Q; = : —_— : (8)
wT('un) 0 0 ... @i@n)

where@),; denotes a diagonal matrix composed fromdheevaluated at the training
data points. Ify is a vector containing the values of the target function @tlita points
then thei-th local parameter vector is given by

0.- (X"QX) X"Qu. (©)

3.4 Local Model Statistics
Using the abbreviation
-1
00 = (XTQjX) (10)

the parameter variance d@) can be expressed by
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cov() = 020 XTQ?XOq. (11)

with the assumption that the measurement noise at différaining data points is un-
correlatedE{ee”} = o21. It has to be mentioned that the noise covariangeis
not known in most cases and therefore has to be replaced nthpeical covariance
computed from the available data.

The variance of the local model outpiy{w;) is then calculated by

cov(§i(w)) = E{(y; — )} == o2[1 + z(u;)Og X" Q; X Oqz™ (u;)]. (12)

The prediction interval at a point in the input space with a significance levelof
is given by

[9(u) — y(w)|a = 00\/1 + 2(W)OXTQ* XOgw(u)T x 11_5  (13)

As indicated, the-statistics have to be computed for a significance level-86
with the degrees of freedom depending on both the numberiitig data involved
and the number of regressors.

4 Global Model Design

Apart from the local model design the interaction of all locedels has to be consid-
ered in a global design. This involves the aggregation ofdbal model outputs as well
as global model statistics, global prediction intervald afficient ways to compute the
R? andR?,_, statistics.

pred

4.1 Global Model Output

As defined in (1) the global model output is a weighted sum lofoahl outputs. The
weights depend on the locatianin the input space and are determined from the validity
functions®:

m

G(u) =Y bi(u)gi(u,0;)

i=1

As already mentioned earlier the design parameters of thdityafunction, » in
particular implicitly determine the degree of overlap beén the local models and thus
serve as a regularisation parameter. It is straightfonilzatistrong overlap in general
leads to smoother function approximation.
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4.2 Global Prediction Intervals

Computation of confidence intervals at the global level imgs two steps:

1. Computation of the covariance
2. Determination of the effective degrees of freedom at tlobaj level for thet,,
statistics.

Step 1 is straightforward since the global model output im@ar combination of
the local model as given by (1). Strictly speaking, the otgmd different local models
7;(u) are not independent since the underlying models all orfgifram the same data.
However, the shape parametein (2) entails that there is only little overlap between
single local models. The statistical interdependenciésdsn local models is therefore
neglegible, which was also verified in numerous tests.

m

cov(j(u)) = Z 07 (w)cov(g; (u)) (14)

In the above formula cdy;(u)) is taken from (12). It is noteworty that (14) does
not contains?2 directly. The covariance cy; (u)) of every local model depends on the
model structure and on the local measurement noise. Thiasikat (14) could also be
applied if the measurment noise varies from local model ¢allonodel, provided that
cov(y;(u)) is computed correctly.

Step 2 is taken from [5] where the effective number of paranset. s, is deter-
mined from the trace of the so-called "smoothing matrix”.

The remaining degrees of freedom then resulPDtOF = n — n.s; and this is the
basis for the computation of tiestatistics. It is noteworthy that, ; ¢ is not necessarily
an integer number. During the tree construction procesmitetimes happens that the
validity function of a certain local model is successivelipped away by subsequent
models so that it finally doesn’t contribute anymore to thelelguality. In the present
application these models are finally removed if theif s ; has dropped below 1.

5 Results

In the given example measurement data from an IC-Enginecansidered. For the de-
velopment and testing of the presented algorithm measunthagabases from different
engine manufacturers were used. The dimension of the im@adesin these databases
varies from three to eight.

The three-dimensional database will be illustrated initlsilace in this case some
demonstrative graphical illustrations can be given.

In particular, the air efficiencyl, of a valvetronic engine shall be represented as a
function of engine speed, valve lift L,, and intake closure timé..:

Ae = f(navaTc)
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The resulting network models the map: R®> — R with an accuracy of?? =
0.9941 and k2, , = 0.9931 using 7 local models. In comparison, the LOLIMOT-
algorithm using the same quadratic local model structueel®80 local models to reach
the same accuracy.

Figures 7, 8 and 9 depict the network output each with onetikppt constant.
Apart from the network output the corresponding trainintad#oints are depicted and
the validity functions are represented by contour linesteNbat not all seven validity
functions are visible in the respective intersection ptariecan be seen that they are
fitted to the shape of the target function in an efficient way.
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Fig.8. Valvetronic engine example: Model

Fig. 7. Valvetronic engine example: Model out-output for7e. = 498 =const.
put forn = 2600 =const.

The measurement data considered in this example were asbtasompare the
performance of the presented network architecture andiigaialgorithm to that of a
perceptron network. The number of hidden neurons was crsssnthat the effective
number of weights corresponds to the number of parameteitseirompeting local
model network. The weights of the perceptron network wet@oped using standard
training algorithms in combination with different regulaation techniques in order to
balance bias and variance errors. In a Monte-Carlo sinmndtiturned out that despite
this efforts the perceptron has particular difficultie®mblating the large gaps between
the individual valve lift values (cf. Fig. 7 and Fig. 10).

Altogether, 300 Perceptrons were trained in the manneritbescabove, resulting
in the following statistical assessment: 13% of all Penwest had a performance supe-
rior to that of the local model network. They exceededRfg, , value of 0.9931 and the
interpolation behaviour was better. 13% of all Perceptmmosiuced a comparable per-
formance in terms of the same criteria. The remaining 74% @08 perceptrons were
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Fig. 10. Valvetronic engine example: Percep-

Fig.9. Valvetronic engine example: Model tron output forn — 2600 —const.

output forL,, = 6 =const.

outperformed by the local model network, cf. Fig. 10. In maages theonfidence
intervalwas unacceptably large for practical applications.

6 Conclusion and Outlook

In this paper a new iterative tree construction algorithmdaal model trees was pre-
sented. The validity functions of the generated model arsety fitted to the available
data by allowing an arbitrary orientation and extent of thkdity function of each local
model in the input space.

The regularisation of the model can be controlled by a shag®ifx which deter-
mines the overlap between local models and by a confidenekdethat controls the
relative size of each local model.

The application to data from internal combustion enginesshthat the proposed
algorithm produces excellent results with a relatively lmuwmber of local models.
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