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Abstract: This paper studies the benefits the use of GSHF can afford to the pole-placement control scheme. The 
GSHF makes possible to locate the zeros of the discretized plant arbitrarily in the Z plane. This property can 
be taken advantage of to improve the performance of the pole-placement control. In this article a new design 
method is suggested and a simulations-based application example is carried out. In the application example 
the improvements this method involves with respect to the classical design method are noticed. 

1 INTRODUCTION  

Usually, most sampled data control systems use the 
Zero Order Hold (ZOH). However, some authors 
((Kabamba, 1987) (Bai and Dasgupta, 1990) (Er and 
Anderson, 1994) (Yan et al., 1994) (Rossi and 
Miller, 1999) (Barcena abd De la Sen, 2003)) have 
proved that using hold patterns which differ from the 
zero order extrapolation, that the ZOH carries out, 
can improve the discrete performance of  the hybrid 
system. 
The GSHF (Generalized Sampled-data Hold 
Function), device which has been widely studied 
(Kabamba, 1987) (Bai and Dasgupta, 1990) (Er and 
Anderson, 1994) (Yan et al., 1994), has a generic 
hold function which can be tuned to obtain some 
advantages. For example, (Kabamba, 1987) proves 
that the zeros of the discretized plant can be placed 
arbitrary in the Z plane by tuning the hold function 
of the GSHF. 
Several hybrid control schemes are based on the 
cancellation of the zeros of the discretized plant with 
the controller poles. The pole-zero cancellation 
cannot be done if there is any unstable zero in the 
discretized plant, because it would make the system 
internally unstable (Jury, 1956). This cancellation 
would not be advisable either if there is any 
insufficiently damped zero, since the cancellation of 
this zero could cause intersample ripple (Clarke, 
1984). It is always possible, by using the GSHF, to 
stabilize the zeros of the discretized plant, when are 
unstable, or to increase the stability degree of the 

critically damped ones, in order to make possible a 
safe cancellation. Therefore, this device makes 
possible the use of mentioned control schemes. 
 On the other hand, it is well known (Kuo, 1992) that 
the relative location of the zeros from the poles 
influences in the system response. Therefore, the 
GSHF can be used to place the zeros of the 
discretized plant in more favourable locations from 
the viewpoint of the control strategy and, in that 
way, to improve the performance achieved with the 
ZOH. 
Although the mentioned advantages, both 
concerning the discrete performance of the hybrid 
system, some authors  ((Feuer and Goodwin, 1994) 
(Freudenberg et al., 1995) (Freudenberg et al., 
1997)) have proved that the use of the GSHF can 
cause intersample difficulties which do no appear 
when the ZOH is used. Nevertheless, this happens in 
designs in which the intersample ripple these devices 
can cause has not been taken into account. However, 
when this possibility is taken into account by the 
design method, it is possible to get somewhat degree 
of improvement in the discrete performance of the 
hybrid systems, without incurring in a too large 
deterioration of the intersample performance. An 
example of this appears in (Hjalmarsson and 
Braslavsky, 1999). 
Using the GSHF carries another adverse effect: its 
static hold function requires that the control signal 
varies even during the steady-state. This can cause 
the actuator fatigue and accelerate its wear. In (Chan, 
2002) it is suggested an alternative to the static hold 
pattern of the GSHF. The device suggested in that 
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paper converges asymptotically toward a ZOH input 
pattern as the controlled system response tends to the 
steady-state step response. This eliminates the 
unceasing magnitude changes and the ripple the 
control signal suffers during the steady-state step 
response when the GSHF is employed. The analysis 
of this device, variable GSHF from now on, and the 
benefits its use can afford to the pole-placement 
control will be the objectives of this paper. 
 This paper is organized in the following manner. In 
section 2 the most important characteristics of the 
variable GSHF are described and the pole-placement 
control scheme structure is commented. In the 
section 3 a new design method for this controller is 
suggested. This design methodology takes into 
account the variable GSHF properties so that the 
benefits that this hold device can afford are taken 
advantage of. In this way the pole-placement control 
scheme performance is improved. In section 4 a 
simulations-based application example is carried out 
and the outcomes are compared with the obtained 
ones by the classical design method. To finish, the 
conclusions are drawn in the section 5. 

2 PRELIMINARIES 

2.1 Variable GSHF (Chan, 2002) 

The variable GSHF contains m discrete filters which 
process the incoming discrete signal with the sample 
time Tm. A MISO discrete filter of m inputs which 
works with a sampling time of Tm/m processes the 
output signals of these m filters. The output signal of 
this filter is rebuilt with a ZOH which works at the 
same sampling rate. The Fig. 1 shows the structure of 
the variable GSHF. 
The variable GSHF divides the sampling time Tm in 
m subintervals and in each one of these subintervals 
the hold function is kept constant. The amplitude 
associated to each one subinterval depends on the 
state of the MISO filter variable GSHF contains. 
Therefore, the gains of each one subinterval may 
vary from a sampling time to another. For that reason 
we call it variable GSHF. 
Using a variable GSHF with m=2 and a suitable 
selection of the parameters of the discrete filters it is 
possible to locate the zeros of any strictly proper 
transfer function of arbitrary order which no contains 
zeros, arbitrarily in the Z plane (Chan, 2002) (Chan, 
1998). This is the case that we will study in this 
paper. 
The v1(z),...,vm(z)  filters are introduced to produce the 
redundancy in the discrete control signal necessary 
for zero placement. These filters are defined by (1) 
where cl(z) and d(z) are polynomial of the same 

degree. The MISO filter is defined by equation 
system (2) where sl, with l=1,2,...,m, and p are 
scalars. 
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Figure 1: Variable GSHF 

If the process to be controlled, discretized by the 
ZOH contained in the GSHF, has the following 
discrete-time  
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then, the state space representation of the system 
composed of MISO filter and the discrete system 
represented by (3) has the discrete time 
representation described by the system (4). 
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In the equation system (2) it is noticed that, when the 
MISO settles, the signal which is reconstructed by 
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the ZOH at each multiple of Tm/m begin to update 
only a time per sampling period. Therefore, the 
variable GSHF behaves as a GSHF during transient 
response and as a ZOH in the steady state. This 
eliminates the unceasing changes of magnitude and 
achieves to reduce the ripple that the static hold 
pattern of the GSHF produces. 
Using two subintervals (m=2), the assignment of the 
discrete transfer function numerator is obtained 
resolving the following diophantine equation:  

1 1 2 2
1

( ) ( ) ( ) ( ) ( ) ( ) ( )
m

l l
l

g z c z g z c z g z c z num z
=

= + =∑  (8) 

where cl(z) are the numerator polynomial of the m 
discrete filters which precede the MISO filter, num(z) 
is the polynomial required as numerator of the 
discretized plant transfer function and  gl(z) is the 

polynomial of the numerator of each one of the m 
discrete systems obtained when the equation system 
(4) is particularized to a concrete value of l. 
It is important to point out that the implementation of 
the variable GSHF involves no additional hardware 
since the discrete filters are implemented in the 
computer and, therefore, the only hardware needed to 
implement this device is a ZOH. 

2.2 Control scheme 

In this paper the improvement the use of GSHF can 
contribute to the pole-placement discrete control, 
which is vastly studied in (Aström and Wittenmark, 
1990), is analyzed. 
In this control scheme, which structure is represented 
in Fig. 2, the polynomial R(z), S(z) and T(z) of the 
discrete filters of the feedback loop and 
precompensator are calculated to match the 
behaviour of the closed-loop with the reference 
model. This is carried out by solving the following 
equations 
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where A0(z) is a polynomial introduced to ensure the 
solvability of the second equation of (9). The 

discretized plant zeros are transmitted to the 
reference model unless they are cancelled with the 
controller poles. It is important to point out that only 
stable zeros can be cancelled. For this reason the B(z) 
polynomial is factorized into the following 
polynomials: B+(z) and B-(z). Where B+ contains the 
stable zeros of the discretized plant the designer 
wants to cancel and B-(z) contains the unstable zeros 
and the stable zeros the designer decides to transmit 
to the reference model. The zeros of the B-(z) are 
necessarily roots of the numerator of the reference 
model and, therefore, when B-(z) contains any zero, 
the reference model cannot be chosen totally freely. 
For this reason the polynomial Bm(z) is factorized in 
the following way 

( ) ( ) ' ( )mB z B z B z−= m  (10) 
where B’m(z) is the polynomial contained in Bm that 
can be chosen freely. In other respect, the polynomial 
B+(z) is cancelled with the controller poles and 
therefore the roots of  B+(z) must be roots of the 
polynomial R(z) 

Figure 2: Reference model control scheme 
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Using (10) and (11) in (9) the equations obtained are 
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By solving the equations (12) the discretized plant 
behaviour is matched with the reference model 
described by the equation (13). 
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3 DESIGN METHOD 

This paper accomplishes the analysis of the 
improvements that the GSHF can contribute to pole 
placement control scheme. In this control scheme, the 
first step is to locate the poles of the reference model 
in terms of the required behaviour. Then, two 
possibilities exist. It is possible to cancel the zeros 
with controller poles or to transmit them to the 
reference model. Is well known (Kuo, 1992) that the 
relative position of the zeros from the poles 
influences on the closed loop performance. In a 
generic manner, to be able to relocate the zeros of the 
closed loop anywhere in the Z plane supposes an 
advantage. However, it is not always possible, since, 
if the zeros of the plant are unstable or not 
sufficiently damped, it is not advisable to cancel 
them. Therefore, when the ZOH is the device used 
for the reconstruction and the discrete transfer 
function has this kind of zeros, we are forced to 
transmit them to the reference model. 
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The variable GSHF, however, allows us to relocate 
the zeros arbitrarily in the Z plane. Therefore, this 
device permits to avoid these problems. Besides, two 
possibilities exist. 
The first method lies in using the variable GSHF to 
locate the zero of the discretized transfer function of 
the plant in the position where the reference model 
has its zero. This allows achieving the model 
matching without carrying out a cancellation. 
The second way to match the closed-loop discrete 
behaviour with the reference model using the GSHF 
lies in positioning the zero of the discretized plant 
transfer function in a place where the discrete zeros 
are suitable to be cancelled without incurring in 
intersample ripple. If the zero is located in a place 
with this characteristic, then it is possible to cancel 
this with the controller and to place the zero of the 
system in the prescribed position. 

4 APPLICATION EXAMPLE 

In this section it is carried out a comparative study 
between the performance attained in pole-placement 
scheme by the ZOH and the attained one by a 
variable GSHF, tuned as is described in section 3. 
Both methods are applied for accurate positioning of 
a computer hard disk read/write head. The model of 
the read/write head used (Franklin et al., 1992) is 
described by de following differential equation 

( ) ( ) ( ) ( )iI t C t K t K i tθ θ θ+ + =  (14) 
where I  is the inertia of the head assembly, C is the 
viscous damping coefficient of the bearings, K is the 
return spring constant, Ki, is the motor torque 
constant, i(t) is the input current and θ(t) is the 
angular position of the head. With the parameters 
suggested in (Franklin et al., 1992) (I=0.01 Kgm2, 
C=0.004 Nm/rad, K=10Nm/rad  y Ki =0.005Nm/A) 
the transfer function that describes the dynamic of 
the plant is 

2
5( )

0.4 1000
G s

s s
=
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To discretize a process, a usual agreement suggests 
choosing the sampling time 20 times higher than the 
continuous plant bandwidth (Kuo, 1992). To 
accomplish with this agreement the sampling time is 
fixed to 0.006 s. Pole-placement controller is the 
scheme used in this section. The discrete behaviour 
that is wished to transmit to the plant is described by 
the following transfer function: 
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When the control objective is reached, the equivalent 
damping coefficient of the closed-loop system is 

about 0.89. This reference model has been chosen to 
obtain the closed-loop system with the minimal 
settling time. This selection is carried out due to the 
fact that the settling time is one of the more 
important specifications that the step response of a 
hard disk needs to improve since the read/write 
operation cannot start until the read/write head of the 
hard disk places correctly in the position the 
reference signal requires. 
However, if the ZOH is used the obtained discrete 
transfer function is 

( )5

2
8.9659 10 0.9992

( )
1.962 0.9976ZOH

z
G z

z z

−⋅ +
=

− +
 (17) 

This transfer function has its zero located almost on 
the unit circle and it is not advisable to cancel this by 
the controller. Fig. 3 shows the obtained result when 
necessary cancellation to catch up with the discrete 
reference model is carried out.  
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Figure 3: Unit-step response of the compensated system
by using ZOH device when discrete controller cancels the
discretization zero. 
Hence, it is necessary to transmit the zero of the 
process to the reference model. When the zero is 
transmitted to the reference model the system has the 
step response shown in Fig. 4. 
However, using GSHF it is possible to move the zero 
from the place that it presents when ZOH is used. On 
the one hand it is possible to use the GSHF to locate 
the zero of the discrete transfer function of the plant 
in the position where the reference model has its 
zero. This allows achieving the model matching 
without carrying out a cancellation. The variable 
GSHF parameters used to locate the discretization 
zero in z=0.4 are p=0, s1=1, s2=0.5, c1(z)=-13.8528z 
- 1.1708, c2(z) = 18.3565z + 2.3416 and d(z)=z.  In 
Fig. 5 is depicted the step response of the system 
when the related design method is achieved. 
As is shown in Fig. 5 with the use of GSHF the 
matching with the reference model (16) is attained 
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without incurring in the generation of the intersample 
ripple that the system was having when in the control 
scheme the reconstruction device employed was the 
ZOH (compare with Fig. 3). Comparing Fig. 4 and 
Fig. 5 it is noticed that to be able to fit the model 
reference model (16) when the GSHF is used 
supposes an improvement: No one of both responses 
present overshoot, but while the system which 
employs ZOH settles in  0.52 s. the system that uses 
GSHF needs only 0.41 s.. This supposes an 
improvement of 21% in the settling time. 
On the other hand, if the zero is located with the 
GSHF at z=-0.2 (p=0, s1=1, s2=0.5, c1(z)=-4.6707z – 

0.3344, c2(z) = 6.6713z + 0.6687 and d(z)=z) and 
then is cancelled with a controller pole, the step 
response of the closed loop is almost the same to the 
obtained one in the case where the zero was directly 
located in z=0.4. 

The control signals of the three designs are depicted 
in Fig. 6, Fig. 7 and Fig.8. In that figures it is noticed 
that the reduction of the settling time is obtained at 
expense of amplification of the control signal. The 
amplification of the control signal is quite big, and 
therefore, it is important to decide, depending on the 
application, if the improvement obtained justifies the 
amplification the control signal suffers respect the 
ZOH case, or not. It is important to notice that in this 
paper only two subintevals (m=2) are taken into 
account and may be possible, with the use of more 
subintervals, to reduce the control signal amplitude 
during the transient response. However, if the 

number of subintervals used is very high the ZOH 
contained in the GSHF is forced to work at high rate.  

Figure 6: Control signal when the discrete plant zero is 
transmitted to the reference model and ZOH is used.  Figure 4: Unit-step response of compensated system by 

using ZOH device, when discrete plant zero is transmitted 
to reference model. 

Figure 7: Control signal of the design that uses the GSHF 
to locate the zero in z=0.4 and this zero is transmitted the 
discrete controller. 

Figure 5: Unit-step response of compensated system by 
using GSHF device to locate the zero in z=0.4 and this is 
transmitted to reference model. 
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Figure 8: Control signal of the design that uses the GSHF 
to locate the zero in z=-0.2 and this zero is cancelled by 
the discrete controller. 

5 CONCLUSION 

In this paper, it has been noticed by means of an 
application example that the variable GSHF can 
improve the performance of the pole-placement 
control scheme. The variable GSHF allowed us to 
place the discretization zero of a second order 
continuous plant in more beneficial location from the 
viewpoint of the control strategy, improving in that 
way the performance of the closed loop. 
On the one hand, when the ZOH discretization zero 
is sufficiently damped, it is possible to cancel it with 
one of the controller poles and to locate the closed-
loop zero in the place where the reference model has 
its zero. In such situations, the ZOH discretization 
zero does not impose limitations to the attainable 
performance and, therefore, the possibility of 
relocating it that GSHF provides does not suppose 
any advantage. On the other hand, when the ZOH 
discretization zero is unstable or poorly damped, 
which often happens when the sampling time used is 
small enough (Aström et al., 1984), it is not advisable 
to cancel it and, therefore, the performance that can 
be attained by the classical design method is limited 
given that the designer is forced to transmit such a 
zero to the reference model in order to avoid 
intersample ripple. This is the case studied in this 
paper and it has been noticed that it is possible to 
match the closed-loop discrete behaviour to the 
reference model by the variable GSHF, without 
generating intersample ripple. 
From the carried out study it is concluded that the 
GSHF ability to move the zeros can be used to 
improve the transient response of a pole-placement 

control. It has been also noticed that this 
improvement is obtained at expense of the 
amplification of the control signal during transient 
state. It is important to point out that in this study it 
has been used a variable GSHF with two subintervals 
and it may be possible to reduce the control 
amplitude by using more subintervals. 
During the study, the possible deterioration of the 
sensitivity functions, both discrete and hybrid ones, 
have not been taken into account. That is one of the 
possible drawbacks that the use of the GSHF can 
generate (Freudenberg et al., 1997) and future 
investigations on this device should integrate the 
analysis of such functions. 
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