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Abstract: A new feature extraction method based on five moments applied to three wavelet transform sequences has 
been proposed and used in classification of prehensile surface EMG patterns. The new method has essen-
tially extended the Englehart's discrete wavelet transform and wavelet packet transform by introducing more 
efficient feature reduction method that also offered better generalization. The approaches were empirically 
evaluated on the same set of signals recorded from two real subjects, and by using the same classifier, which 
was the Vapnik's support vector machine. 

1 INTRODUCTION 

The electromyographic signal (EMG), measured at 
the surface of the skin, provides valuable informa-
tion about the neuromuscular activity of a muscle 
and this has been essential to its application in clini-
cal diagnosis, and as a source for controlling assis-
tive devices, and schemes for functional electrical 
stimulation. Its application to control prosthetic 
limbs has also presented a great challenge, due to the 
complexity of the EMG signals. 

An important requirement in this area is to accu-
rately classify different EMG patterns for controlling 
a prosthetic device. For this reason, effective feature 
extraction is a crucial step to improve the accuracy 
of pattern classification, therefore many signal rep-
resentations have been suggested. 

Various temporal and spectral approaches have 
been applied to extract features from these signals. A 
comparison of some effective temporal and spectral 
approaches is given in (Du & Vuskovic 2004), 
where the authors have applied moments to short 
time Fourier transform (STFT), and short time 
Thompson transform (STTT) on prehensile EMG 
patterns.  

The wavelet transform-based feature extraction 
techniques have also been successfully applied with 

promising results in EMG pattern recognition by 
Englehart and others (1998).  
      The discrete wavelet transform (DWT) and its 
generalization, the wavelet packet transform (WPT), 
were elaborated in (Englehart 1989a). These tech-
niques have shown better performance than the oth-
ers in this area because of its multilevel decomposi-
tion with variable trade-off in time and frequency 
resolution. The WPT generates a full decomposition 
tree in the transform space in which different wave-
let bases can be considered to represent the signal. 
The techniques were applied to feature extraction 
from surface EMG signals. 

However, these techniques produce a large 
amount of coefficients, since the transform space has 
very large dimension. This fact suggests the system-
atic application of feature selection or projection 
methods and dimensionality reduction techniques to 
enable the methodology for real time applications. 
Englehart applied feature selection and feature pro-
jection that yielded better classification results and 
improved time efficiency. Specifically, the principal 
component analysis (PCA) was used due to its abil-
ity to model linear dependencies and to reject irrele-
vant information in the feature set (Englehart etal. 
1999). 

This paper continues the work described above 
by taking a different approach to feature reduction.  
Extending the idea of spectral moments suggested in 
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(Du & Vuskovic 2004) the sequences of wavelet 
coefficients are further subjected to the calculation 
of their temporal moments. The main goal of this 
work is to propose and empirically compare two 
different novel feature extraction approaches based 
on simple two-scale DWT and WPT with the two 
best Englehart’s approaches using the DWT and the 
WPT in combination with principal component 
analysis (PCA).  

In this new approach, the first five raw moments 
were applied to DWT transformed prehensile EMG 
sequences, which has proven to be very advanta-
geous in the classification stage. The methods em-
ployed a simple DWT or WPT with only three trans-
form sequences, instead of the full DWT or WPT 
used by Englehart. This has eliminated the tedious 
feature reduction procedures and PCA. 

The evaluation of the three approaches was car-
ried out on the same set of data, and with an identi-
cal classifier based on Vapnik's support vector ma-
chines (SVM) with a linear kernel.  

2 PREHENSILE EMGS 

The research presented here was motivated by the 
need for classification of prehensile elec-
tromiographic signals (EMG) for control of a multi-
functional prosthetic hand (Vuskovic etal. 1995). 
Since the hand-preshaping phase in an average ob-
ject grasp takes about 500 ms, it is important to ac-
complish the feature extraction and classification in 
less than 400 ms, preferably in 200 ms. Such a diffi-
cult task requires very strong feature extractor and 
classifier.   

The mioelectric control of multifingered hand 
prostheses was studied in several papers, for exam-
ple (Nishikava 1991), (Uchida 1992), (Farry 1996), 
and (Huang 1999). Most of the ideas in these efforts 
were inspired by Hudgins (Hudgins etal. 1991). In 
this work the concept of preshaping of multifunc-
tional grasps was based on the recognition of a par-
ticular finger joint movement. In an earlier work 
done at San Diego State University, the approach 
was rather different, based on grasp types, instead of 
hand configurations in joint space. Once a grasp type 
is recognized from the recorded EMGs, it can be 
then synergistically mapped into the desired joint 
configuration (Vuskovic 1995) for any hand, with 
any number of degrees of freedom. We have consid-
ered four basic grasp types according to the 
Schlesinger classification (Schlesinger 1919): cylin-
drical grasp (C), spherical grasp (S), lateral grasp (L) 
and precision grasp (P), see figure 1.  

3 EXPERIMENTAL SETUP 

Four-channel surface EMG signals from two healthy 
subjects were recorded at 1000 Hz sampling fre-
quency. The recording was done while the subject 
has repeatedly performed the four grasp motions. 
There were 216 grasp recordings evenly distributed 
across the four grasps types: 60 (subject 1) + 4 (sub-
ject 2) for cylindrical grasp, 30+10 for precision 
grasp, 30+10 for lateral grasp and 60 + 12 for 
spherical grasp. Three different EMG sequence 
lengths were used: 200 ms, 300 ms and 400 ms. The 
200 and 300 ms sequences were obtained by truncat-
ing the recordings of 400 ms sequences. (The se-
quences of 300 ms were not presented in this paper.)  

 

 
 
 
 
 

 
 Figure 1: Four grasp types. 

4 DISCRETE WAVELET  
TRANSFORM 

The DWT is a transformation of the original tempo-
ral signal into a wavelet basis space. The time-
frequency wavelet representation is performed by 
repeatedly filtering the signal with a pair of filters 
that cut the frequency domain in the middle.  

Specifically, the DWT decomposes a signal into 
an approximation signal and a detail signal. The 
approximation signal is subsequently divided into 
new approximation and detail signals. This process 
is carried out iteratively producing a set of approxi-
mation signals at different detail levels (scales) and a 
final gross approximation of the signal. 
      The detail Dj and the approximation Aj at level j 
can be obtained by filtering the signal with an L-
sample high pass filter g, and an L-sample low pass 
filter h. Both approximation and detail signals are 
downsampled by a factor of two. 

This can be expressed as follows: 
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where 0 , n = 0,1,…N-1 is the original temporal 
sequence, while H and G represent the convolu-
tion/down sampling operators. Sequences g[n] and 
h[n] are associated with wavelet function 

[ ]A n

( )ψ t  and 
the scaling function  through inner products: ( )ϕ t
 
 [ ] ( ), 2 (2 ) ,g n t t n= ψ ψ −  (3) 
 
 [ ] ( ), 2 (2 ) .h n t t n= ϕ ϕ −  (4) 
 
Operators H and G can be applied repeatedly in al-
teration, for example: 0AA A= H H ,  DD =

0A= G G ,  AD = 0AG H ,  DA =
0

The A and D sequences obtained as the result of 
DWT are still massive in terms of the number of 
samples, which contributes to large dimensionality of 
feature space. Besides, the sequences have a high 
noise component inherited from the original EMG 
signal.  

A= H G

                                                     

, etc. 

 A feature extraction approach based on DWT 
applied by Englehart (1998, 1998a) consists of four 
differentiated phases:  
 
1. Perform full DWT decomposition of the EMG 

signals, until scale j = log2 (N), with the Coiflet 
wavelet of order 4 (C4); 

2. Square the DWT coefficients; 
3. Apply PCA for dimensionality reduction tech-

niques; 
4. Determine the optimal number of features per 

channel based on the target classifier. 
 
An optimization phase is needed before selecting the 
adequate number of PCA features in order to maxi-
mize the performance of the target classifier. The 
optimum number of features was 100 DWT coeffi-
cients per channel of the EMG signal used in this 
work.  

5 WAVELET PACKET  
TRANSFORM 

The WPT is a generalization of DWT. It generates a 
full wavelet basis decomposition tree. In each scale, 
not only the approximation signal as in DWT, but 
also the detail signals are filtered to obtain another 
two low and high frequency signals. Many different 
representations of a signal can be obtained by select-
ing different wavelet packet basis. In this regard 
WPT is superior to DWT, as the chosen basis can be 

optimized with respect to frequency or time resolu-
tion.  

Englehart (1999) generated a feature extraction 
method based on the WPT for EMG signals. In this 
method a previous phase must be applied to the set 
of training signals. The underlying idea is to select 
the WPT basis that best classifies all classes of sig-
nals. For this purpose, Englehart proposed a modi-
fied version of the local discriminant basis (LDB) 
algorithm (Englehart 1998a, 2001), to maximize the 
discrimination ability of the WPT by using a class 
separability cost function (Saito & Coifman 1995). 
Once the best basis for classification is defined (for 
different channels and different signal lengths), the 
following steps must be performed: 
 
1. Perform the full WPT decomposition until 

scale j = log2 (N), with the Symlet wavelet of 
order 5 (S5); 

2. Square the WPT coefficients; 
3. Average energy maps within each subband; 
4. Select the WPT coefficients from a basis cho-

sen previously for each channel and for differ-
ent signal lengths; 

5. Extract the optimal number of features based 
on the target classifier; 

6. Apply PCA transform to the feature space for 
dimensionality reduction (removing the eigen-
vectors whose eigenvalues are zero); 

7. Extract the optimum number of features per 
channel for the target classifier; 

 
The optimal number of features for Englehart’s 

WPT based approach and for the support vector ma-
chine as the target classifier (see section 7) was 
found to be three features per channel, per signal 
length. 

6 DWT AND WPT MOMENTS1 

The new approach for feature extraction presented 
here is based on DWT and WPT, and on the calcula-
tion of their temporal moments. The approach was 
first proposed in (Rodriguez & Vuskovic 2005) as an 
extension of the idea of spectral moments (Du & 
Vuskovic 2004). 

Specifically, we used two different wavelets suc-
cessfully applied by Englehart on surface EMG sig-
nals: C4 and S5 

 
1 DWT and WPT moments should not be confused 
with wavelet vanishing moments. 
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In order to reduce the dimensionality and to 
smooth out the noise, we applied six moments to 
transformed signals (DWT and WPT): 
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where  represents sequences A, D, AA, DD, AD 
and DA used in algorithms described below, while Nj 
is number of samples at the corresponding level of 
decomposition. 

[ ]S n

The new approach based on DWT consists of the 
following steps: 

 
1. Perform two-scale decomposition of the input 

signal; 
2. Compute moments for three transform se-

quences (D, AA, AD); 
3. Apply logarithm transform to each feature, 

log(0.1+f); 
4. Normalize all features using mean value and 

standard deviation computed for each feature 
across all samples. 

 
The choice of sequences D, AA and AD was 

made empirically; it has given the best results in av-
erage for the given set of data. Similar choice was 
made for WPT algorithm. 

The WPT-based method has the following steps: 
 

1. Perform two-scale decomposition of the input 
signal; 

2. Select basis obtained from previous application 
of the best basis Coifman algorithm; 

3. Compute moments for three transform se-
quences (A, DA, DD); 

4. Apply logarithm transform to each feature, 
log(0.1+f); 

5. Normalize all features using mean value and 
standard deviation computed for each feature 
across all samples. 

 
The optimal basis selection in this method was 

based on a single channel. The same basis thus ob-
tained was subsequently used for single and multiple 
channels, and for different sequence lengths. 

Log transformation was applied to moments as it 
effectively reduces the skewness and the kurtosis of 
data, consequently resulting in an estimated probabil-
ity density that appears more like normal distribution 
(Vuskovic atal. 1995). The nonlinear transformation 
of features has significantly improved the classifier 
performance. 

7 THE SVM CLASSIFIER 

The support vector machines ( Christianini & Shaw-
Taylor 2000) are a family of learning algorithms 
based on the work of Vapnik (1998), which have 
recently gained a considerable interest in pattern 
recognition community. The success of SVM comes 
from their good generalization ability, robustness in 
high dimensional feature spaces and good computa-
tional efficiency. 

In this work, a standard SVM classifier with lin-
ear kernel has been used for dichotomic (binary) 
classification (Gunn 1997). The multiclass SVM can 
also be considered, but this is out of the scope of this 
paper.  

 The previous work on the classification of pre-
hensile EMG patterns (Vuskovic 1996) has shown 
that the most difficult is to discriminate cylindrical 
from spherical grasps (C/S), and then lateral from 
precision grasps (L/P). Therefore the SVM is applied 
to these pairs of grasp types and the feature extrac-
tion methods were evaluated accordingly. 

The classification tests were performed with 
leave-one-out method, where one sample was re-
moved from the data set and the rest of the samples 
were used to train the SVM. The procedure was re-
peated for each sample in the data set, and the aver-
age hit rate was computed afterwards. 

8 COMPUTATIONAL  
COMPLEXITY  

Application of WPT and calculation of J scales, 
2log≤J N , where N is the length of the original 

temporal signal, results in JN coefficients. Conse-
quently, the computational cost of the full-scale 
WPT is in the order of 2  
(Englehart 2001). Similarly, the computational com-
plexity of full-scale DWT is half the computational 
complexity of the WPT, i.e.

( ) ≤O JN ( log )O N N

( )2log 2O N N . Since 
our new approaches use only two-scale DWT or 
two-scale WPT decomposition, we can enumerate 
all the approaches with respect to their computa-
tional complexity in the increasing order: DWT(new) 
< WPT (new) < DWT (Englehart) <  WPT (Engle-
hart). The complexities are summarized in table 1. 
 

Table 1: Computational complexity 
New approach Englehart 

DWT WPT DWT WPT 

O(N) O(2N) O(N logN/2) O(N logN) 

ICINCO 2005 - SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL

74



9 EXPERIMENTAL  
EVALUATION 

In this section we discuss the methodology for the 
experimental evaluation of DWT and WPT ap-
proaches. 

9.1 Cluster Visualization 

In order to compare the effectiveness of a feature 
extraction method there is needed some method to 
compare the discrimination of clusters in feature 
space, either by 2D or 3D scatter plots, or by some 
distance measure between clusters.  Both methods 
are normally based on the transformation of the fea-
ture space through PCA or Fisher-Rao transform, 
which both use the inverse of the cluster covariance 
matrices. Unfortunately the dimensionality of the 
feature space is often larger than the number of sam-
ples, which makes the methods inapplicable due to 
the singularity or ill-conditioning of the covariance 
matrices. However, the support vector machines of-
fered new possibilities. SVM maximize the margin 
between clusters and the separation hyperplane in the 
original or kernel-induced feature space without a 
need to use covariance matrices.  

We use in this work a projection of the original 
feature space onto the line perpendicular to the 
maximal-margin separation hyperplane: 
  (6) ,Tp X w=
where X is N×d sample (feature) matrix, w is unit, d-
dimensional normal to the separation hyperplane, 
and p is N-vector of projected samples.  In order to 
get a 2D plot of samples another projection vector is 
needed: 
  (7) .Tq X u=

The d-dimensional projection vector u doesn't 
have to be orthonormal to w, but has to be unique in 
some way. Therefore we used the direction of the 
minimal variance of both clusters, which is nearly 
laying in the separation hyperplane. The vector co-
incides with the eigenvector that corresponds to the 
smallest non-zero eigenvalue of the pooled covari-
ance matrix: 

 1 1 2 2
1 2

1 2

( 1) ( 1)
( , ) ,

2
N S N S

S pool S S
N N

− + −
= =

+ −
 (8) 

where Ni  (N1+N2 = N) and Si are sizes and covari-
ance matrices of the two clusters.  An example of 
cluster diagrams, plot(p,q), is shown in figure 3, 
which will be discussed later. 

9.2 Hotelling Distance 

A useful quantitative measure of cluster discrimina-
tion in multidimensional space is Hotelling distance 
between cluster means (T2 statistic). The T2 can be 
computed for projected clusters: 

 
2 11 2

1 2 1 2
1 2

1 2

( ) (

( , ),

TN N
T c c C c

N N

C pool C C

−= −
+

=

),c−
 (9),  

where ic and Ci are sample means and sample co-
variance matrices of projected clusters respectively. 
In order to establish the significance of the distance 
under some confidence level, the T2 distance needs 
to be compared with the corresponding critical value 

. The critical value can be obtained if we assume 
that the quantity 

2
cT

 2 1 2

1 2

( 1
( 2
N N r

T
N N r

)
)

+ − −
+ −

 

 has F-distribution with degrees of freedom r and 
1 2 1f N N r= + − − , where r = 2 in case of 2D pro-

jections (Seber 1984). The above is true under the 
assumption that clusters have normal distributions 
with nearly equal sizes and covariance matrices. If 
this is not the case, a stronger statistic has to be used. 
In this work we used statistic suggested in (Yao 
1965), where the cluster distance was computed as: 
 ( ) 12

1 2 1 1 2 2 1 2( ) / / (TT c c C N C N c c
−= − + − ).

T

 (10) 

The degrees of freedom for the F-distribution 
were estimated from the data (Seber 1984)  (not pre-
sented here due to limited space). The test works for 
unequal clusters that can have any bell-shaped dis-
tribution. The T2 values are shown in tables 2 and 3, 
and in the scatter diagrams in figure 3. The critical 
values c were all below 11. The value of cluster 
distances as a quantitative measure of cluster dis-
crimination is that they can be easily and quickly 
computed. 

2

9.3 Number of Moments 

Once the classification pairs are determined, the next 
step is to determine the optimal number of DWT and 
WPT moments, which will be used for feature 
reduction. This was done experimentally by 
extensive  
application of feature extractions and classiffications 
to different EMG signal lengths and different number 
of channels.  
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Based on the bar graphs the selection of five mo-
ments (M0, M1,…,M4) was a clear choice.  

10  THE RESULTS 

The comparison of four different approaches: the 
five-moment DWT and WPT as proposed in this pa-
per, and the DWT and WPT of Englehart (1998a, 
1999) have been measured by Hotteling distances and 
by the classification hit rates applied to two cluster 
pairs (C/S) and (L/P).  

The results are presented in tables 2 through 5. 
The feature extraction was performed for 200 and 400 
ms time sequences recorded from a single channel 
and from four simultaneous channels. Each channel 
represented one surface EMG electrode attached to 
the upper-forehand of the subject. Several different 
wavelets were used in experiments, but only the two 
most successful ones were shown here: the fourth-
order Coifman wavelets (C4) and the fifth-order sym-
lets (S5). The two tables show a roughly good corre-
lation between the Hotelling distances and the classi-
fication hit-rates. The small differences can be ex-
plained by the fact that the Hotelling distances point 
the goodness of clustering, while the hit rates stress 
the generalization of the trained SVM.  

An example of four different cluster scatter dia-
grams is shown in figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Hotelling distances versus number of moments 
for WPT: (a) 200 ms, single channel, (b) 200ms, four 
channels, (c) 400 ms, single channel, (d) 400 ms, four 
channels (C/S grasps – lower bars, L/P grasps upper bar 

Figure 3: SVM-projected clusters, 200 ms, and four chan-
nels, WPT: (a) C/S - new approach, (b) L/P - new ap-
proach, (c) C/S - Englehart, (d) L/P - Englehart 
 

The results suggest clear advantage of our novel 
method over the Englehart’s approaches mainly due 
to the moments used for dimensionality reduction, 
instead of applying PCA. In addition, the application 
of log transformation on features has helped consid-
erably. Our WPT novel method seems to behave 
better at classifying the 200 ms sequences. This is 
due to the WPT basis selection, which better charac-
terizes the frequency structure of the transient sig-
nals. 
 

Table 2: Hotelling distances (C/S) 
  

New approach Englehart 

WT WPT 

Sig. 
length 
/chnls C4 S5 C4 S5 

DWT 
C4 

WPT 
S5 

200/1 75 61 109 97 49  13 
200/4 352 466 424 421 201  73 
400/1 92 79 96 79 480 45 
400/4 366 570 535 488 295 100 

 
 

Table 3: Hotelling distances (L/P) 
 

New approach Englehart 
DWT WPT 

Sig. 
length 
/chnls C4 S5 C4 S5 

DWT 
C4 

WPT 
S5 

200/1 33 65 44 100 362 11 
200/4 289 3462 1724 723 756 107 
400/1 178 166 233 262 118 60 
400/4 560 24680 1472 718 2388 168 
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Table 4:  Classification hit rates in %  (C/S) 
 

New approach Englehart 
WT WPT 

Sig. 
length 
/chnls CO4 SY5 CO4 SY5 

DWT 
C4 

WPT 
S5 

200/1 75.0  76.7   79.2  79.2  60.8  62.5 
200/4 90.0 94.2  94.2 95.0 86.7 88.3  
400/1 80.8  80.0   80.8   77.5   60.8 59.2 
400/4 99.2  96. 7  98.3  97.5  88.3 93.3 

 
 

Table 5:  Classification hit rates in %  (L/P) 
 

New approach Englehart 
WT WPT 

Sig. 
length 
/chnls CO4 SY5 CO4 SY5 

WT WPT 

200/1 73.3   81.7   81.7   83.3  56.7 53.3  
200/4 91.7  96.7  90.0  98.3  80.0 93.3  
400/1 96.7   95.0   93.3  91.7  56.7 63.3 
400/4 99.9   99.9   99.9  99.9  88.3 95.0 

11 CONCLUSIONS 

A new approach of wavelet-based feature extraction 
from temporal signals has been proposed. The ap-
proach extends the Englehart's discrete wavelet trans-
form and wavelet packet transform by subjecting the 
two-scale, three-sequence wavelet coefficients to 
temporal moment computation. This has helped re-
duce significantly the dimensionality of the resulting 
feature vectors without loosing the essential informa-
tion in the original patterns. It was found experimen-
tally that first five raw moments represent a good 
compromise. The new methods are applied to pre-
hensile EMG signals of various lengths and various 
amounts of input signals (surface EMG channels) 
and compared to the best approaches of Englehart, on 
the same set of signals. For the comparison are used 
two quantitative measures: Hotelling statistic and 
classification hit rates. The classifier applied to the 
extracted features was linear support vector machine, 
which has exceptionally good performance in case of 
large feature spaces and fewer training samples. The 
results have shown superior performance of the new 
approach. A brief complexity analysis also shows 
that the new approach is more efficient time wise. 
      Although the methodology was demonstrated on 
EMG signals, we believe the methodology can 
equally successfully be applied to other temporal 
signals. 
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