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Abstract: One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) algorithm for 
solving global optimization problems with continuous parameters. In this article the Differential Evolution 
algorithm is proposed for handling nonlinear constraint functions to find the best initial weights of neural 
networks. The highly non-linear behaviour of servo-hydraulic systems makes them idea subjects for 
applying different types of sophisticated controllers. The aim of this paper is position control of a flexible 
servo-hydraulic system by using back propagation algorithm. The poor performance of initial training of 
back propagation motivated to apply the DE algorithm to find the initial weights with global minimum. This 
study is concerned with a second order model reference adaptive position control of a servo-hydraulic 
system using two artificial neural networks. One neural network as an acceleration feedback and another 
one as a gain scheduling of a proportional controller are proposed. The results suggest that if the numbers of 
hidden layers and neurons as well as the initial weights of neural networks are chosen well, they improve all 
performance evaluation criteria in hydraulic systems.

1 INTRODUCTION 

Problems which involve global optimization over 
continuous spaces are ubiquitous throughout the 
scientific community. In general, the task is to 
optimize certain properties of a system by 
pertinently choosing the system parameters. For 
convenience, a system’s parameters are usually 
represented as a vector. The standard approach to an 
optimization problem begins by designing an 
objective function that can model the problem’s 
objectives while incorporating any constraints. 

Consequently, we will only concern ourselves 
with optimization methods that use an objective 
function. In most cases, the objective function 
defines the optimization problem as a minimization 
task. To this end, the following investigation is 
further restricted to minimization problems. For 
such problems, the objective function is more 
accurately called a “cost” function. 

One of the most promising novel evolutionary 
algorithms is the Differential Evolution (DE) 
algorithm for solving global optimization problems 
with continuous parameters. The DE was first 
introduced a few years ago by Storn (Storn, 1995) 
and Schwefel (Schwefel, 1995). 

When the cost function is nonlinear and non-
differentiable Central to every direct search method 
is a strategy that generates variations of the 
parameter vectors. Once a variation is generated, a 
decision must then be made whether or not to accept 
the newly derived parameters. Most stand and direct 
search methods use the greedy criterion to make this 
decision. Under the greedy criterion, a new 
parameter vector is accepted if and only if it reduces 
the value of the cost function. 

The extensive application areas of DE are 
testimony to the simplicity and robustness that have 
fostered their widespread acceptance and rapid 
growth in the research community. In 1998, DE was 
mostly applied to scientific applications involving 
curve fitting, for example fitting a non-linear 
function to photoemissions data (Cafolla AA., 
1998). DE enthusiasts then hybridized it with 
Neural Networks and Fuzzy Logic (Schmitz GPJ, 
Aldrich C., 1998) to enhance or extend its 
performance. In 1999 DE was applied to problems 
involving multiple criteria as a spreadsheet solver 
application (Bergey PK., 1999). New areas of 
interest also emerged, such as: heat transfer (Babu 
BV, Sastry KKN., 1999), and constraint satisfaction 
problems (Storn R., 1999) to name only a few. In 
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2000, the popularity of DE continued to grow in 
areas of electrical power distribution (Chang TT, 
Chang HC., 2000), and magnetics (Stumberger G. et 
al, 2000). 2001 furthered extensions of DE in areas 
of environmental science (Booty WG et al, 2000), 
and linear system models (Cheng SL, Hwang C., 
2001). By the year 2002, DE penetrated the field of 
medical science (Abbass HA., 2002). Most recently 
in 2003, there has been a resurgence of interest in 
applying DE to problems involving multiple criteria 
(Babu BV, Jehan MML. 2003). 

Electro-hydraulic servomechanisms are known 
for their fast dynamic response, high power-inertia 
ratio and control accuracy. In the fluid power area, 
neural network systems have been used for control, 
identification and modeling of the system (Chen, 
1992). The popularity of neural networks can be 
attributed, in part, to their ability to deal with non-
linear systems. In addition, a neural network 
approach uses a parallel distributed processing 
concept (D.E.Rumelhart, et al, 1986). It has the 
capability of improving its performance through a 
dynamic learning process and, thus, provides 
powerful adaptation ability. Since neural networks 
are fashioned after their human neural counterparts, 
they can be ‘trained’ to do a specific job by 
exposing the networks to a selected set of input–
output patterns. A comparatively convenient 
method is to have a reference response model, 
which can be the tracking object of the control 
system. Following the model reference adaptive 
control theory (Franklin, 1984), an adaptive 
reference model is used in this study and 
implemented in the microcomputer to control a 
hydraulic variable motor. 

Gain scheduling based on the measurements of 
the operation conditions of the process is often a 
good way to compensate for variations in the 
process parameters or the known nonlinearities of 
the process. 

The main aim of the following study is to apply 
the DE strategy to find the best initial weights of the 
proposed neural networks to improve the 
performance of position tracking of the reference 
model.  

The structure of the paper is the following: in 
section 2 description of the flexible servo-hydraulic 
system, section 3 controller design, section 4 
differential evolution algorithm, section 5 presents 
the main results of this work, and section 6 draws 
conclusions. 

2 SERVO HYDRAULIC SYSTEM 

The hydraulic system with flexible load shown in 
figure 1 is comprised of a servo-valve, a hydraulic 
cylinder and two masses that are connected by a 
parallel combination of spring and damper. The 
schematic diagram of the system is illustrated in 
figure1.   

The nonlinearity of the constitutive equations as 
well as the sensitivity of the system’s parameters to 
the sign of the voltage fed to the valve make the 
control of system too complicated (Viersma, 1980).  

2.1 System Model 

 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic Diagram of System. 
 

Applying Newton’s second law for each mass 
without consideration of coulomb friction results, 
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Continuity equations for the output ports of the 
servo valve results, 
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Introducing two new parameters, 1C and 2C , 
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Equation 3 can be written in the form of, 
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The volumes between the valve and each side of 
piston are calculated as, 

01p11 XAV ν+=  

02p22 XLAV ν+−= )(  

ICINCO 2005 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

134



 

If the tank pressure is set to equal to zero ( 0=Tp ), 
the nonlinear equations of flow rate of valve can be 
written in the simplest form, as follow, 
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Table 1: Setup Parameters 
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The setup parameters of system are shown in 
Table1. 

Following, the structure of controller for 
positioning control of each mass is proposed.   

3 CONTROLLER DESIGN 

Here, the aim of the controller is position tracking 
of a reference model. Classical approaches, like P or 
PD regulators for positioning of hydraulic drives, do 
not give satisfactory performance. For this reason, 
adaptive control techniques, adaptive reference 
model, and gain scheduling are used to improve the 
performance of Controller (4).  The variations of 
parameters depending on the change in the sign of 
voltage fed to the valve are compensated by gain 
scheduling block. The second neural network is 
impelled to improve the lack of damping in 
hydraulic systems. Following the reference model 
and each neural network are proposed. 

3.1 Reference Model 

 The desire linear, second order, reference model 
was selected to run parallel with the nonlinear 
system. The natural frequency, nω , of this model set 
equal to as 7 rad/sec with the damping ratio, ζ , of 
0.9. 
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There are kinds of method to find a reference 
model such as ITAE or Bessel transfer functions. 
The Bessel transfer functions have not overshot 
when nω  is equal to one, but when nω is greater 
than one the overshot appears. 

The natural frequency of system was chosen in a 
manner that the response of system is as fast as 
possible. The chosen damping ratio provides the 
minimum overshoot of reference model.  

3.2 Neural Network Design 

 Basic neural networks consist of Neurons, weights 
and activation function. The weights are adapted to 
achieve mapping between the input and output sets 
in the manner to track reference model. Many 
neural networks are successfully used for various 
control applications. In this study the 
backpropagation algorithm with momentum term 
was used to update the weights and biases of neural 
network (Rumelhart, 1986). The backpropagation 
algorithm is a learning scheme in which the error is 
backpropagated layer by layer and used to update 
the weights. The algorithm is a gradient descent 
method that minimizes the error between the desired 
outputs and the actual outputs calculated by the 
MLP.  

The backpropagation training process requires 
that the activation functions be bounded, 
differentiable functions. One of the most commonly 
used functions satisfying these requirements is the 
hyperbolic tangent function. This function has a 
monotonic increasing in the range of –1 to 1. The 
mathematical model of hyperbolic tangent can be 
written in the form of, 
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The learning procedure requires only that the 
change in weights and biases are proportional to the 

wE p ∂∂ / . True gradient descent requires that 
infinitesimal steps be taken. The constant of 
proportionality is the learning rate in the procedure. 
The bigger change of this constant, the bigger 
change in the weights. For practical purposes we 
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choose a learning rate that is as large as possible 
without exciting oscillation. This offers the most 
rapid learning. One way to increase the learning rate 
without leading to oscillation is to modify the 
general delta rule to include a momentum term. This 
can be accomplished by the following rule, 
      )()()( nwo1nw jipipjji ∆+=+∆ αδη               (9) 
where n indicates the presentation number. The 
parameter of η  is the learning rate, and α  is a 
constant which determines the effect of past 
changes on the current direction of movement in 
weight space.  

The proposed controller depicted in figure 2, 
composed of two neural networks, shown as blocks 
Neural Networks and Gain Scheduling. Neural 
Network Block is used as acceleration feed back to 
improve the dynamic behavior of system (lack of 
damping). 
     

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Schematic Diagram of Neural Controller 
 

Neural networks parameters are updated online by 
learning rate and momentum factors. As it shown in 
figure, the proposed neural network has two hidden 
layers, figure3, one input and one output layer. The 
inputs of neural network are two accelerations 
( )(kai , )( 1kai − ) and the output of pervious 

step, )1( −kun . Several kinds of structure with one 
or three hidden layers were tested. The proposed 
structure has this ability to emulate the acceleration 
feedback and improve the dynamic behavior of 
system.  

The second neural network, gain scheduling 
network, has the same structure as pervious one, but 
the inputs are the two controller errors ( )(ke , 

)( 1ke − ) and the output of last step, )( 1kuG − . 
Due to the poor results of p-controller in return 
stage the second neural network tried to compensate 
this matter. Finally, the controller output, 
summation of Nu and Gu , is fed to the system.  
Choosing the initial weights are too important in 
back-propagation algorithm. To avoid local minima 
problem, the genetic algorithm is used to find the 
off-line weights (Corne. 1999). 
 

 

 
       
 
 
 

Figure 3: Structure of Neural Network 
 

For online training with backpropagation algorithm 
the learning rate of 6102 −×=η and 00010.=α  are 
used. The simulation results are depicted in result 
section. 

Following the results of using new controller is 
compared with common p-controller.  

4 DE STRATEGY 

Differential evolution (DE) is a simple yet powerful 
population based, direct-search algorithm for 
globally optimizing functions defined on totally 
ordered spaces, including especially functions with 
real-valued parameters. Real parameter optimization 
comprises a large and important class of practical 
problems in science and engineering.  
There are two variants of DE that have been 
reported, DE/rand/1/bin and DE/best/2/bin. The 
different variants are classified using the following 
notation: 
DE/x /y/z; 
where 

• x indicates the method for selecting the 
parent chromosome that will form the base 
of the mutated vector. Thus, DE/rand/y/z 
selects the target parent in a purely random 
manner. In contrast, DE/best/y/z selects the 
best member of the population to form the 
base of the mutated chromosome. 

• y indicates the number of difference 
vectors used to perturb the base 
chromosome. 

• z indicates the crossover mechanism used 
to create the child population. The bin 
acronym indicates that crossover is 
controlled by a series of independent 
binomial experiments. 

Following, the schematic procedure of a class of DE                        
( DE/rand/1/bin) is presented.   
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D= number of parameters. 
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The aforementioned algorithm finds the global 
minima more reliable than the other methods. Note 
that these kinds of algorithms are useful in off-line 
training as the speed of approaching in not fast. 
Here, the numbers of initial weights for each neural 
network are 49. Following is the selected 
parameters for this strategy, 
D= 49, 
NP=5× 49 ≈ 250, 
F=0.8, 
CR=0.7, 
The initial upper and lower bounds are 1,-1, 
respectively. 
The results show that DE can find the global 
minimal cost for the system. Depend on the 
expected value of cost, the DE will find the proper 
weights. Here the cost of system is defined as 
follow, 

 
 
 
  
 
 

 
 
 
 
 
 
 

 
Figure 4: Cost of System against the Number of its 
Iterations 
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Where, 
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The desire input ( dX ) is pulse input with the 
amplitude of 0.3 (m) and period of 4 (sec.).  In the 
first step the weights of neural network compensator 
were found. To do that, the gain scheduling was 
replaced with a constant around 5 and then the cost 
for half of period was calculated. The sampling time 
here is one millisecond, so the cost will be 
calculated 2000 times in each iteration. 

Figure 4 shows the amount of cost against its 
iteration number. The result indicates that at the 
earlier iteration the amount of cost is too big. Also 
the algorithm finds new child generations with 
lower cost to fast (cost bigger than 30). To find the 
lower cost, the number of iterations must growth up. 
As it shown, when the number of iteration is around 
30000, the related cost is around 17.6, after around 
34000 iterations the cost will be fixed at 15.6. This 
cost will be constant and its related weights has the 
global minimum cost for the proposed neural 
compensator. 

After aforementioned step for tuning the neural 
network, using the same strategy, the weights of 
neural gain scheduling will be found.  

In the next section the proposed neural networks 
will be impelled to position controlling of the 
system. The important factor in DE is factor of F. 
The iteration number is incredibly related to this 
factor. However, the change of crossover factor has 
not essential effect in decreasing the number of 
iterations. The chosen value is recommended in 
many cases to be useful. In this study, the number 
of generation was 1973 times during 100000 
iterations. 
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5 RESULTS AND DISCUSSIONS 

In this section the results of using proposed 
controller for two cases are provided. These 
controllers are tracking the reference model for 
piston tracking ( 1m ), case I, and flexible load 
tracking ( 2m ), case II, respectively. 

The desire input ( dX ) is pulse input with the 
amplitude of 0.3 (m) and period of 4 (sec.).  

5.1 Piston Tracking 

 Figure 5 is the piston tracking of the reference 
model using neural network with gain scheduling. 
Figure 6 is its controller effort that will be fed to 
nonlinear system. 

The maximum and minimum voltages fed to the 
valve are limited to 10± (Volt). As it shown in 
figure 6, the maximum and minimum of voltage are 
banded because of valve restriction. 

5.2 Fexible Load Tracking  

In this section the results of using second controller 
to track of reference model for flexible load is 
presented. Figure 7 is the flexible load tracking of 
the reference model using neural network with gain 
scheduling.  
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 5: Result of Mass Load Tracking Using Neural 
Network with Gain Scheduling. The Solid Line Shows the 
Reference Model and Dots Line Show Mass Load 
Position 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: Controller Effort Using Neural Controller with 
Neural Gain Scheduling 

 
 
 

 
    
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Simulation Result of Flexible Load Tracking 
Using Neural Network with Gain Scheduling. The Solid 
Line Shows the Reference Model and Dots Line Show 
Mass Load Position. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Controller Effort Using Neural Controller with 
Gain Scheduling 
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Figure 8 is its controller effort that will be fed to the 
system. 

The acceleration of flexible load is used for the 
neural network block. The results are satisfactory 
and illustrate the capability of the neural network in 
controlling and compensating the dynamic of the 
servo hydraulic systems. 

As it was shown in the figure 5, in rising and 
falling stages, the flexible load tracking is similar to 
that of the piston tracking. 

Figure 7 shows that the neural network with the 
gain scheduling has very good performances during 
the rising and falling. The aforementioned controller 
can track the reference model very well. Figure 8 
shows the output of controller is smooth and has not 
any oscillation. 

6 CONCLUSIONS 

In the present paper the application of DE and back-
propagation algorithm in position control of a 
flexible servo-hydraulic system was studied. The 
results suggest that neural network has good 
performance if the initial weights of system are set 
correctly. To avoid the local minima, Differential 
Evolution Algorithm is essential. These kinds of 
algorithms are too slow, so they are useful only in 
off-line training. 

In this article the Differential Evolution 
Algorithm for handling multiple nonlinear functions 
was proposed and demonstrated with a set of two 
difficult test problems. With all test cases, the 
algorithm demonstrated excellent effectiveness, 
efficiency and robustness.  The architectures and the 
number of hidden layers are the other essential keys 
to have a well-performed neural network. If the 
number of hidden layers or neurons in each layer is 
not enough the results will be poor. Several 
structures were tested and the aforementioned 
architecture was adapted. 

In light of above, using neural network to 
compensate the dynamic of hydraulic systems is an 
essential factor to improve their performances. 
Also, the implementing of the gain scheduling 
overcomes the variations of parameters during its 
perform.  

7 NOMENCHLACHERS 

1A    piston area in chamber one 

2A    piston area in chamber two 

iB    biases ( i =1, 2, 3) 

 
0b     viscous friction coefficients of cylinder 

1b     viscous friction coefficient of flexible load 

vc     flow coefficient 
k      spring constant 

pk    proportional gain 
L      stroke 

1m    mass of rigid body 

2m    mass of flexible load  

1p    pressure in chamber one 

2p    pressure in chamber two 

sp    pressure supply 

Tp    tank pressure 

1Q    flow rate in chamber one 

2Q    flow rate in chamber two  

nQ    nominal flow 
u      control signal 

1u     proportional controller signal 

2u    neural network controller signal 

nu    nominal controller signal 

1V     compressed volume of chamber one 

2V    compressed volume of chamber two 

jiw   neural network weights ( i =1,2,3) 

lx     load position 

px   piston position 

rx     reference position  

dX   desire position 

np∆  nominal pressure difference 
α      momentum rate 

eβ    effective bulk modulus 

η      learning rate  

0ν     volume of pipe between valve and cylinder 
port 

nω    natural frequency 
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