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Abstract. DNA microarrays technology is very recent and rapidly evolving. At
present, it is widely used in the analysis of gene expression. The interpretation of
the data crucially depends on the accuracy of the localization of the circular spots,
which are placed in rectangular grids. The problem is complicated by the presence
of many local deformations of the grid, by the high variability in luminance of
the spots, by noise and other disturbances due to the biological nature of the
experiments. In this paper we implement an automatic method for the gridding of
real microarrays that takes into account most of the open problems by exploiting a
recently introduced image transform, the Orientation Matching Transform, which
enhances circular patterns of a specific size.

1 Introduction

DNA microarray consists of a solid surface onto which DNA molecules have been
chemically bonded. Microarrays are widely used to study gene expression in order to
associate gene activities with biological processes and to group genes into networks of
interconnected activities. They are very advantageous since they allow to measure the
expression of thousands of genes in parallel and in a quasi automated way. On the other
hand every microarray experiment poses the problem to handle and analyze a huge mass
of data, which is often corrupted by noise or some other disturbances.

A common type of microarray is callgoin spotted because it is produced via a
robotic arm that spots the DNA probes on the microscope slides. The robot is shaped as
a grid of pins and so a typical spotted microarray is composed of a set of regular grids of
circular spots, as schematized in Figure 1. This is the type of microarrays on which we
will focus and when we speak of microarrays we really intend pin spotted microarrays.
For a full explanation of how microarrays are engineered and for a survey of all types
of existing technologies refer to [11].

The result of a microarray experiment is presented in the form of an image, where
the most expressed genes are indicated by high intensity spots. The first stage of the
analysis is calledyridding, that is the process of assigning coordinates to the spot lo-
cations. Then the data Egmented in order to separate the foreground pixels from
the background. Finally comes thaensity extraction that corresponds to reading the
intensity of expression of each spot.
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Microarray of 6x4 grids

Fig. 1. The structure of a microarray and the image axes vs. the grid axes.

We will limit the analysis to the gridding, which is a crucf@lase as the accuracy of
the whole analysis depends on the precision with which spratdocated. Sometimes
the problem of gridding is solved by requiring human inteti@n to specify some
points in the grid or even to register individual spots. Tdriscle aims at automatizing
the gridding task as much as possible via the application défarmable gridding
proposed in [2] and then developed in [3], [4]. The methodaisdal on the Orientation
Matching Transform (OMT) presented in [5] and until now ishHeeen evaluated solely
on synthetic images generated for the purpose. The cofitnibof this paper is the
adaptation of the technique to make it suitable and robusth® treatment of real
images of microarrays that present much more difficulty éoghidding.

2 Gridding

Both the number of grids on a slide and the number of spotsiwétgrid may vary
in different microarrays. In general the space between tigs ¢ much larger than the
space between the spots and this suggests to treat eacleggictely. An example of
a good quality microarray grid is shown in Figure 2.

The biological nature of the data makes it prone to a numberatflematic situa-
tions that make gridding a difficult task: high backgroundseoirregular shape or size
of the spots, presence of faint spots, imperfect alignméthe spots along the rows
or columns of the grid, local deformations as well as sma#tions of the grid due to
wrong placement under the image scanner, sensible skew tfithaxes and so on. All
these issues need to be treated automatically in order &edlce spots in an accurate
way. However most of the approaches so far presented fooaray gridding, e.g. [1]
and [8], try to pose some restrictions on the data or makegtassumptions, such as
requiring grid rows and columns perfectly aligned alongxlaady axes of the image.

In our approach we assume the axes of the grid free to rotdkeresgpect to the
axes of the image (see Figure 1). In particular the row a&iscan make an angle
a < 7 with the horizontal axisX of the image, and the column axi§' can make
with X’ an angles — o # Z. Moreover, we will allow the spacingsAz, Ay) of the
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Fig. 2. A good quality grid and its OMT (with parameters= 2, R = 4)

spots (along the columns and the rows respectively) to lberdift, and we assume no
apriori knowledge on the number of rows and columns.
The strategy of the gridding is divided into the followingcsessive steps:

— OMT: transform of the image to enhance the circular objects pkaified size;

— regular grid: use of the Radon Transform (RT) to project the OMT outpuhglo
all directions in order to identify the axes’ anglesand 3; the knowledge on an-
gles enables us to determine the grid spacings and the catediof the first spot
(z0,y0); the tuple(a, 8, Az, Ay, xq, yo) completely specifies the regular grid po-
sitions(mij, yij)

Zij = 2o + 1Ay cos B+ jAz cosa
Yij = Yo + iAysin f + jAzrsin o (1)

that best match the actual microarray grid;

— deformable grid: deformation of the regular grid by adopting a Bayesian agpin:
choice of the trade off between regularity and accuracy peguosition on the
actual spots, calculated via a Maximum A Posteriori (MAR)esne.

2.1 Orientation Matching Transform

The OMT is an extension of the Hough Transform for circles aag first proposed
in [5]. Our scope here is to accurately segment the spots thenbackground. Two
common approaches to the problem would be to work on the edags or to threshold
the gray scale image according to some criteria. Both theasggies suffer from many
complications due to the high variability of spot luminaniwethe presence of noise and
in particular to the existence of many spots that are alnm®siaak as the background.
The OMT presents the sure advantage that it does not workeoaltbolute luminance
of the spots and it is essentially invariant to contrast glean

In details, letA*(0, 0) be the annulus of radii and R centered in the origin, that is

AF0,0) = {(z,y) eR|r <a®+y* < R}.
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If we defineg* in such a way that

Y

x
cos o*(r,y) = —— ; sino*(z,y) = — .
@)= @) = s

and if ¢(z, y) is the orientation of the image gradient(in, y), then the OMT is given

by?:
OM (u,v) = m X //Aﬁ(w) cos (¢"(z —u,y —v) — ¢(z,y)) dedy (2)

The factorm is equal to the inverse of the area of the annul{f§u, v); it works

as a normalization factor to obtainl < OM (u,v) < 1. In words, (2) uses the cosine
to measure the similarity between the orientatignof the gradient of ideal circles
centered in(u, v) (with radii ranging in f-,R]) and the orientation of the image gradient
around the same point. It is sufficient to know the range af tddhe spots in a certain
microarray to apply the correct transfotm

Figure 2 shows the output of the OMT for the sample imagecedtow the faint
spots are partially recovered in the transform image.

Sincecos(¢* — ¢) = sin¢™ sin ¢ + cos ¢* cos ¢, the OMT can be implemented
as the sum of two image filterings, which is computationallycnmore efficient than
applying the definition as it is.

2.2 Radon Transform projections

The Radon Transform [9] is at the basis of Computer Tomogrdg@tause it permits
to reconstruct an unknown 2-dimensional function (typict#he image of adlice of
biological tissue) by calculating its integral along atdis passing through it in all
possible directions. In our context we do not need the irveensform, what we need
is to identify the direction of the axe¥’ andY” of the grid. We do it by analyzing the
projections of the OMT image over different orientations.

The formal definition of the 2D RT of a signdlis

Rs 4(f) z/_ /_ f(z,y)d(zcosg + ysing — s)dzdy 3)

where the Kronecker delta is used to specify the line of iatign defined in polar
coordinategs, ¢).

3 Our definition is equivalent to the original

wv) = 1 cos (¢*(z —u,y —v) = $(2,y)) 4
OM (u,v) e (R 1) X.//A,@(u,v) N TR da dy

as both exhibit the desired property of normalization (they are both diordass).

4 Usually the right parametersand R remain fairly constant across experiments made on the
same type of support. However they can vary very much from miragao microarray and it
is crucial to choose a good couple of radii for the gridding to work.
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If I is the gray scale image of the grid, we are interested in thetior®

10 = [ |R.sOM1)]ds @

R, , (OMT)
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Fig. 3. The Radon transform vs. theé, peaks

The left side of Figure 3 depicts the output/®f 4(OM (I)) applied to the image in
Figure 2; notice how the projection width shrinks and howgtdile gets better defined
as the angle approaches the perfect alignment with an a®ie gfrid. On the right side
it is shown the behavior of ,(I); the main directions of the grid are calculated by
choosing the two peaks that are best correlated accordithg toriterium

P Ly, (1) - Iy, (1)
(o, B) = arg (gllif;) 14 |cos(pr — ¢2)|

The two sub-peaks corresponding to the diagonals of theageidlso visible.

The identification ofo and g allows us to study the row and column structure of
the grid. In principle it would be enough to tak& ,(OM (1)) andR, 3(OM (1)) over
all s, and to study the two profiles separately in order to estirtteenumber of rows
and columns and the respective spacifds, A, ). However care must be taken at this
stage of the gridding because the shape of the two projextiam pose some problems:
there can be very different peak intensities due to rowsfook with many faint spots
and, above all, false peaks can be caused by dirt found ofidearsbetween the wells
that contain the spots. Therefore there is need for someegsoty to normalize the
signals and clean them from possible causes of error.

5 Differently from [3], in (4) we introduce the absolute value because thegial of
R, 4(OM(I)) over s is equal along all directions and it is close to zero (reeall <
OM (u,v) < 1), while the integral of|R,,s(OM (I))| increases with the accentuation of
peaks (w.r.t. valleys) in the projection.
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Fig.4.TheY’ profile corresponding to the projection of the grid transform along afglefore
and after treatment)

To this end, we experimentally found that it is much more stbio analyze the
profile of a reinforcement of the OMT, that is to use the progets of

- ((1 +OM(I))

2 L+oM(I) _

-1 ) , where( < 5 <

Afterwards we attenuate the variability in peak intensitiyy passing to the loga-
rithmic scale and, in order to flatten the false peaks, weyagp@aussian filtering whose
support size depends on a rough estimate of the peak sp&gnd-igure 4 for th&”’
axis projection (before and after treatment) of the sammbege (theX’ axis projection
is analogous).

After the individuation of all peaks we use (1) to build thguéar grid (Figure 5)
that best overlaps the microarray grid.

2.3 Bayesian gridding

The final step of the gridding technique aims at deformingrégilar grid in order to
get the best possible match between the spot centers anddimogitions. A possible
solution to this problem is to use a Bayesian scheme of interdike that proposed in
[7]. This methodology consists in building a model of miamag grids (the so called
prior) and use a Maximum A Posteriori (MAP) approach to establibithvis the best
gridding on a given instance of the problem according totthadel. In symbols, if is

the image in input to our system andis the model of the grid, we want to fir@ that
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maximizes
P(G)P(I|G)

P(I)
The choice of the grid model is very important because on @mel fits precision im-
proves the quality of the gridding, but on the other handidlness in details affects
the complexity of the computation of

G* =arg max P(G)P(I|G) = arg max log P(G|I) . (6)

P(G|T) = x P(G)P(I|G) ()

In [7] the modelG really describes a grid because it takes into account betipaisi-
tions of the spots and the length of the arcs that connectgaatto its neighbors. For
simplicity we follow the analysis of [4], wher€ is in fact a prior based on 1-cliques:
each spot is treated independently of its neighbors andeafett of the grid. However,
while they use a computationally expensive and potentglly-optimal algorithm (the
Simulated Annealing) to solve (6), we exploit the mutualdpendence of the spots
to find the optimal solution in an efficient fashion. If a grigljust a collection of in-
dependent spots, then every sgptis assumed identically distributed (according to a
Gaussian distribution) around the corresponding positigrof the regular grid. The
joint distribution of G becomes very simple

1 r

P(G) ocexp [_2 > (g —tig)" Ty (i — tm‘)]
ij

The model ofZ depends only on the variance of the Gaussian distributibigiwshould

be estimated from a sample of grids. However we assume naafrdgpendence of the
Gaussian displacements along the two axes (zero covayiandeve fix

Az
Eij2|: %R, Ugw-20'gy:|[k O]

Ay
9y 0

wherek is a constant that regulates the amplitude of the spotslatisment.
The second factor of the objective function is tHelihood that measures how well
the observed instance fits the model. Like in [4] we adopt aecfation model

1
P(I|G) o exp [—2 > a- OM(gij))zl
j
that is we estimate the accordance of the model with the vbdatata by measuring
how close the locations of the deformable grid are to theezeftcircular objects. It is
clear that the deformation of the regular grid is performgd/érying the modetz in
order to find

G* =arg max log P(G|I) = arg max {log P(I|G) +log P(G)} (7)

by balancing the opposite contributions of the first termiciiprivileges the regularity
of the grid, and the second one, which rewards a good matcifing grid with the real
spots’ positions.
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It is important to notice that the objective function (7) dedecomposed in a set
of independent sub-problems, each corresponding to aesapgit

gi; = argmin {(gy; - tig) " 25 (i — tiy) + (1 — OM(gij))*}
andG* can be calculated quite efficiently by an exhaustive visit sinall neighborhood

of eacht,; without implementing a more sophisticated search algaoritfihe process
produces the result shown on the right in Figure 5.
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Fig. 5. The regular grid vs. the deformed grid

3 Experimental results

The experimental evaluation of our gridding technique hesnbquite difficult to ac-
complish because of the lack of ground truth available ohlyieéogical data. However
we wanted to avoid the generation of artificial microarraiggto test upon, since the
synthetic images do not simulate very effectively all theolaed variables: variability
of the spots’ shape, the “texture” of the background andatsa) the presence of imper-
fections due to the unskillfulness of the experimenter anars It is sufficient to take a
look at the internet site of the Stanford Microarray Dat&@MD) [10] to realize how
heterogeneous microarrays are; this is the consequenke wétiety of supports avail-
able combined with the unequal experience of different Brpenters, plus the fact that
a single experiment is so expensive that it might not be auew to repeat it in case
of imperfections.

As a term of comparison we use the gridding done by the softv@anePix [6],
which is a sophisticated commercial software very poputanrag bioinformaticiarfs

® GenePix carries out the complete analysis of a microarray plate, frogritliing to the inten-
sity extraction. Unfortunately its specifications do not give any informatiothe principles
of its functioning, nor on its computational cost, being it a proprietary soiw
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The SMD makes available many GenePix raw data output fileishsdontain the coor-
dinates of the bounding box of each spot, together with thgral microarray images.
In Table 1 we present the evaluation of our gridding techaigiven in terms of statis-
tics on the distance between the locations of the deformieldagid the centers of the
bounding boxes, taken as the ground truth of the data. Theebbparametersr, R)
for each microarray is made by presenting to a human opettsetarutput of the OMT
on a grid chosen at random and over a wide range of pos@bilfi € {4,...,10}
andr € {R —4,...,R — 1}), asking for a preference. The best possible choice that
can be made visually is the one that produces the OMT with tightest and sharpest
peaks in correspondence to the spot locations. The differBn- r decreases with the
regularity of the spots’ size within the grid and, in ideahddions, the choice should
be suchthat = R — 1.

Table 1. Gridding results

Py

ID | grids grids [ time per| mean anglegerror: meaferror: std dey
size completedgrid (sec) « I5) X y X y

4242025% 26
5173622x22,

15/16 16.8 |-0.17°|89.88|2.73 1.68(6.21 1.38
48/48 16.3 |-0.10°|89.89°|0.66 1.06 |0.61 0.84

1170426x26/4/6| 11/32 15.8 |-0.32|90.43|1.09 1.05|0.87 0.94
1401331x32/4|5| 32/32 19.7 |0.02 (89.94/0.59 0.60|0.22 0.31
14317126x26|3|6| 3/32 155 |-0.4° |90.1° [0.88 0.98|0.72 0.93
1598918x196/8| 16/16 13.2 |0.59°|90.02|0.83 1.12|0.60 1.28
1799519x19/4|7| 16/16 14.8 |-0.12(89.89°|1.01 1.18|0.80 0.97
1988020x20/6|7| 5/16 15.5 |0.68°(89.91(1.36 1.67|1.17] 1.69
2038518x18|7/8| 36/48 13.3 |0.14 |91.44|3.98 7.73|6.70 9.48
2163513x16|6|7| 44/48 9.5 |[-0.51°|89.63(1.26 2.44 |2.25 3.62
2258818x16/6/8| 9/16 10.1 [8.15°(98.42(1.13 1.46|0.95 1.53
24047119x19|7/8| 15/16 14.3 |0.16° |90.08|0.91 1.03|0.89 1.02
2449417x17|3|6| 13/16 11.6 |-1.11°(89.78(1.28 1.63|1.02 1.83
2475315x16(3[4| 11/32 8.7 |0.39|90.1° (3.88 1.70 (2.8 1.56
2597830x30/5/6| 48/48 19.7 |0.20° |90.22|0.68 1.05|0.59 0.82
3085518x18|7|8| 16/16 13.0 | 0.1° (89.93/0.82 0.85|0.76§ 0.71
3178418x20/5|7| 14/32 12.6 |-0.09°(89.96'(1.86 3.45|4.72 6.98
32827117x17|3|5| 16/16 11.4 |0.44|90.37|0.89 1.23|0.81] 1.04
3289830x30(4|5| 43/48 21.8 |-0.1° [89.95|0.77] 1.57|0.68 1.32
34727124x24)4|5| 4/16 16.0 |0.77(90.22/0.99 1.21|0.90 1.15
4038018x20/5|7| 31/32 12.6 |0.65°|89.63|1.11 1.00|0.91 0.83
4047|22x244(5| 7/16 14.4 |-0.35°(89.89°(0.92 1.33|0.67 1.53
56
5|7

Table 1 also reports the experiment ID of each microarrajhenSMD and the
average execution tine.

" Implementation in MATLAB on a Pentium 4 (3.2 GHz) machine.



130

4 Discussion and conclusion

Our method automatically detects failure of the griddingjch is often due to inputs
whose structure does not match the expected logical steuofuFigure 1. For instance
there are frequent situatichis which a correct gridding can never be obtained with
our technique because one or more rows are systematicadlsingiat the bottom of
the grids (due to irrelevant expression of the correspangdenes), so preventing any
possible solution solely based on the data. This is a probfesific to the context of
microarrays that is not sufficiently taken into account by gieneral method.

In the remaining cas@she gridding works very well as both the error mean and
standard deviation often kept around one pixel, which isrdele and comparable to
the results achieved in [4] over synthetic imades

In our experience, the prominent cause of failure is theriteab evaluation of the
number and position of rows/columns, which results in thematic discard of the
gridding. Probably it would be enough to require human irgation for the introduc-
tion of the correct number of rows/coluntfigo achieve a much better performance on
most experiments. In our future work we intend to examing variant.
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