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Abstract. Availability of speech related information in the facial EMG is 
discussed. The primary objective of this preliminary work is to investigate the 
use of facial EMG as a voiceless communication medium. Subjects were asked 
to utter the five English vowels with no acoustic output (sub-auditory). Three 
independent EMG signals were acquired from three facial muscles as sub-
auditory EMG activations. In order to classify and recognize each vowel based 
on EMG, RMS of the recorded signals were estimated and used as parametric 
inputs to a neural network.  

1 Introduction 

Electromyography (EMG) is the recording of the electrical activity of muscles. The 
electrical signal is a result of the combination of action potentials during contracting 
muscle fibers. EMG can be performed using invasive or non-invasive electrodes. 
Surface Electromyogram (SEMG), the electrical potential recorded non-invasively 
from the surface of the skin, can be used to identify the overall strength of contraction 
of muscles. Root mean square (RMS) of SEMG is a good indicator of that strength. 
Besides clinical applications, SEMG has been used as a control signal in prosthetic 
devices dating back in the 1970 [1].  
 Speech has been modelled by the source and filter. The filter of sound is a result of 
the mouth cavity and lips and results in giving the spectral content to the sound. 
Vowels are sounds that are relatively stationary while consonants are produced by 
dynamic variation of the filter characteristics. The shape of the lips and mouth cavity 
is controlled by the contraction of the corresponding muscles.  
Based on the above, it is stated that speech produced by any person is dependent on 
the activity of the facial muscles controlling the shape of the mouth and lips. 
Extracting speech related information from facial muscle activities has a number of 
applications. People with speech related disabilities such as vocal cord damage can be 
offered the possibility of communicating with others via machines with facial EMG 
being used as a control signal. EMG, since it is immune from ambient noise, can also 
provide an alternative communication system in a noisy environment. Even so the 
application of EMG in speech research is not new, few work is reported in the 
literature where the above-mentioned applications are effectively realised.   

Morse et al [1] have reported the use of EMG recorded from the neck and temple 
to analyse feasibility of using neural networks to recognize speech. Their parametric 
input to the neural network was the power spectral density of the EMG activated and 
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recorded while subjects quasi-randomly spoke words. They report a very low overall 
accuracy of approximately 60% for the recognition of the signal [1]. A.D.C. Chan et 
al, report the use of facial EMG with linear discriminate analysis to recognize 10 
separate numbers with a recognition accuracy of over 90% [2]. However H. Manabe 
et al [3], have observed language dependent nature of the Chan et al’s work as a 
drawback and suggested the use of phonemes based recognition method [3]. Sugie et 
al [4] report the use of EMG for identifying the phonemes during the subject speaking 
five Japanese vowels but report a low accuracy of 60%. Other researchers such as C 
Jorgensen et al [5] have demonstrated possible application of EMG signal recorded 
from the Larynx and sublingual areas from below the jaw in speech recognition 
particularly for silent or sub-auditory speech. Using neural networks with a 
combination of feature sets, they have shown the potential of sub-acoustic speech 
recognition based on EMG with up to 92% accuracy. 
 From the literature reported, there appears to be a discrepancy of the reliability of 
EMG of the facial muscles to identify speech. Thus, there is a need to determine if the 
use of EMG to identify muscle activity to produce simple sub-auditory sounds is 
reliable and reproducible which would then be the basis for a more complex study. 
With that aim, this paper reports our work conducted to identify certain common 
sounds using surface EMG under controlled conditions.  

2 Background 

2.1 English Vowels 

English vowels are speech gestures that represent stationary filter characteristics with 
no nasal involvement [11]. Based on this, it is argued that the mouth and lips shape 
would remain stationary during the pronunciation of the vowels and hence the muscle 
contraction during the utterance of the vowels would remain stationary. Utterance of 
consonants would result in temporal variation of shape and thus changing muscle 
contraction for the duration of the utterance. For this reason, this research has 
considered five English vowels. This is also important since English vowels are 
building blocks in modern speech. By including temporal variation, this can then be 
extended to consonants. 

2.2 Speech Production and Facial EMG 

The process of human speech is complex with the involvement of number of muscles. 
All facial muscles that are involved in pursing the lips, lifting the corners of the 
mouth and opening the jaw are activated during speech. A number of these muscles 
are not close to the surface making non-invasive EMG recording impossible. Further, 
to record EMG from each of these muscles would be extremely clumsy making it 
extremely uncomfortable for the human participants. Thus it is necessary to identify 
the most suitable muscles that can be used to identify the different vowels. Three 
facial muscles were identified that are more active when subjects attempt to 
pronounce the five vowels. For this aim, three facial muscles were selected. These 
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include Mentalis, Depressor Anguli Oris and Massetter. The Mentalis originates from 
the mandible and inserts into the skin of the chin to elevate and protrude lower lip, 
pull chin skin into a pout. The Depressor anguli oris originates from the mandible and 
inserts skin at angle of mouth pulls corner of mouth downward. Masseter originates 
from maxilla and zygomatic arch and inserts to ramus of mandible to elevate and 
protrude, assists in side-to-side movements of mandible.  

2.3 EMG Feature Extraction and Classification 

Muscle contraction is a result of electrical stimulation received from the nerves to 
individual muscle fibers. This results in electrical activity that can be recorded by 
electrodes kept in the close proximity of the muscles. This recording is called EMG. 
The signal is a summation of number of motor unit action potentials that are spatially 
and temporally separated. The signal is complex and non-stationary, it is bi-phasic 
and cannot be represented by a simple mathematical function.  

The force produced by contraction of muscles depends on the number of active 
muscle fibers and the rate of activation of these fibers. Zero- crossing and spectral 
analysis provide an indication of the rate of activation of the muscle fibers and the 
density of muscle fibers that are being activated. The amplitude of EMG is an 
indicator for the size of active motor units and the integrated EMG and the RMS–
EMG are indicators of rate (density) of activation as well as the number of active 
motor units and the size of these motor units. RMS of EMG highlights the ‘strength of 
the signal’ and thus the strength of contraction of the muscle.  

For applications where the machine can identify the function generated by the 
muscle based on SEMG, require automated analysis and classification of SEMG. For 
automated classification of SEMG related to movement, it is essential to develop the 
system that can extract appropriate features of SEMG with respect to the movement 
and have a mechanism for relating these features to the movement generating the 
signal. Numbers of researchers have used different techniques for the purpose 
including statistical analysis of the signal properties and auto-regression analysis 
Graupe et al. [13] with 85% success rate. But this system was highly dependent on the 
subject and recording and required high degree of manual intervention.  
Hudgins et al [10] reported the first major work of SEMG classification using 
Artificial Neural Networks (ANN).  The ANN was used to introduce the flexibility 
and self-learning ability to the classification technique. The accuracy of the 
classification technique was ranging from 80% to 90%. The authors have also used 
the magnitude of SEMG and neural network based classification to classify pre-
defined hand movements using three channels of SEMG [12].  
 Based on the above, this paper reports the use of multiple channels SEMG of the 
facial muscles. RMS of the signal is computed and backpropagation neural network 
has been used to classify SEMG with the shape of the mouth and lips so formed with 
the aim to identify the vowel in the sub-auditory speech. 
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3 Methodology 

3.1 EMG Recording and Processing 

Three male subjects participated in the investigation. The AMLAB workstation was 
used for EMG recording. The experiment used a 3-channel EMG configuration 
according to recommended recording guidelines [7]. Ag/AgCl electrodes (AMBU 
blue sensors from MEDICOTEST Denmark) were mounted on three selected facial 
muscles (Mentalis, Depressor Anguli Oris and Massetter) on the right side of the 
face.  Inter electrode distance was arranged to be 1cm. Before the recording 
commences, EMG target sites were cleaned with alcohol wet swabs. Inter-electrode 
impendence was checked using a multimeter.  
A pre-amplifier (with a Gain of 1000) was placed for each EMG channels. To 
minimise movement artifacts and aliasing, a band-pass filter (with low corner (-3dB) 
8Hz and with high corner (-3dB) frequency of 79Hz) was implemented. A notch 
filter, to remove a 50Hz line noise, was also included. The EMG signal was amplified 
and sampled with a rate of 250Hz.  
Three facial EMG simultaneously were recorded and observed while subjects utter the 
five English vowels (/a/, /e/, /i/, /o/, /u/) for three times with no acoustic out put (sub-
auditory). Enough resting time was given in between the three activations. Overall 
fifteen data sessions were performed for each subject. To observe any changes in 
muscle activity, the recorded raw EMG signal was further processed. 

3.2 EMG Recording and Processing 

After the recording process was completed, the raw EMG was transferred to Matlab 
for further analysis. The RMS (Root Mean Square) value of each signal was estimated by 
applying equation (1): 
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Where ‘s’ is the window length and f (s) is data within the window. 

4 Recognition 

Recognition of EMG based speech features may be achieved by applying a supervised 
artificial neural network. The artificial neural network is efficient regardless of data 
quality. Neural networks can learn from examples and once trained, are extremely fast 
making them suitable for real time applications [8-9]. The classification by ANN does 
not require any statistical assumptions of the data. ANNs learns to recognize the 
characteristic features of the data to classify the data efficiently and accurately.  
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Back Propagation (BPN) type artificial neural network (ANN) was used for the 
purpose. The advantage of choosing feed forward (FF) and BPN learning algorithm 
architecture is to overcome the drawback of the standard ANN architecture. 
Augmenting the input by hidden context units, which give feedback to the hidden 
layer, thus giving the network an ability of extracting features of the data from the 
training events is one advantage. The size of the hidden layer and other parameters of 
the network were chosen iteratively after experimentation with the back-propagation 
algorithm. There is an inherent trade off to be made. More hidden units results in 
more time required for each iteration of training; fewer hidden units results in faster 
update rate. For this study, two hidden layer structure was found sufficiently suitable 
for good performance but not prohibitive in terms of training time. Sigmoid has been 
used as the threshold function and gradient desent and adaptive learning with 
momentum as training algorithm. A learning rate of 0.02 and the default momentum 
rate was found to be suitable for training the network. The training stopped when the 
network converged and with error less than the target error. The weights and biases of 
the network were saved and used for testing the network. The data was divided into 
subsets of training, validation, and test subsets data. One fourth of the data was used 
for the validation set, one-fourth for the test set, and one half for the training set.  

The RMS values of the three channels of EMG captured during the subject 
pronunciation of the vowels were the inputs to the ANN. The target of the ANN was 
the corresponding vowels. Fig. 1 depicts the ANN architecture. After training, the 
system was tested and the accuracy of correct identification by the network was 
tabulated (Table 1). 

 

Fig. 1. Neural Network Architecture 

5 Results and Discussion 

Table 1. Recognition Accuracy (%) 

 

 /a/ /e/ /i/ /o/ /u/ Average 
Subject 1 97 94 98 93 85 93.4 
Subject 2 91 86 90 85 93 89 
Subject 3 88 89 86 97 95 91 
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Table 1 shows the experimental results. The results of the testing show that with the 
system described can classify the five vowels with an accuracy of up to 91%. The 
higher classification accuracy is due to better discriminating ability of neural network 
architecture and RMS of EMG as the features. At the present stage, the method has 
been tested successfully with only three subjects. In order to evaluate the intra and 
inter variability of the method, a study on a larger experimental population is 
required. Fig.3-4 depicts the statistical bar diagrams of the three sub-auditory RMS of 
EMG data. However, due to the small data bank, it is difficult to determine and 
conclude the significance of the same. 

6 Conclusion 

This paper describes a study to recognise human sub-auditory speech signal based on 
the EMG data extracted from the three articulatory facial muscles coupled with neural 
networks. Test results show recognition accuracy of 91 %. The system is accurate 
when compared to other attempts for EMG based sub-auditory speech recognition. 
These preliminary results suggest that the study is suitable to develop a real-time 
EMG based voiceless communication system. 

7 Further Work 

Authors are working with statistically larger population of experimental subjects. 
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Fig. 2. EMG from three muscles of unvoiced data from subject for vowel “U” 
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Fig. 3. Bar Diagram of 3 channels EMG data for Mean and Standard Deviation for “Vowel e” 
Unvoiced data 
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Fig. 4. Bar Diagram of 3 channel EMG data for Mean and Standard Deviation for “Vowel 
/a/,/e/,/i/,/o/,/u/” unvoiced data  
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