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Abstract. In this paper, we generalize the notion of persistence, which has been
originally introduced for two-dimensional formations, toℜd for d ≥ 3, seeking
to provide a theoretical framework for real world applications, which often are
in three-dimensional space as opposed to the plane. We verify that many of the
properties of rigid and/or persistent formations established inℜ2 are also valid for
higher dimensions. Analysing the closed subgraphs and directed paths in persis-
tent graphs, we derive some further properties of persistent formations. We also
provide an easily checkable necessary condition for persistence.

1 Introduction

Multi-agent systems have attracted considerable attention recently as witnessed by ex-
plosion of papers in the area (see for example [1–4]). Agents, abstracted as vertices
of graphs in this paper (following [5, 6]), can be thought as any autonomous agents
including combat robots, underwater vehicles, unmanned aerial vehicles, and ground
vehicles.

Many control tasks for point-agent systems involve maintaining of the distance be-
tween nominated pairs of agents. For such tasks, a graph can naturally be used to depict
the control architecture as follows: To each agent corresponds a vertex, and for each
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agent (vertex) pairi, j there is a directed edge
−−→
(i, j) from i to j if i has a constraint on

the distance it must actively maintain fromj.
In the recent control literature, the characterization of asystem of the above type has

started to be attempted using the notion ofrigidity of a directed graph[1, 5], which is
calledpersistenceof a directed graph [6] as well. In this paper, we prefer to usethe term
persistencein order to distinguish it from the undirected notion of rigidity. In Section
2, formal definition ofpersistencegiven in [6] is generalized toℜd for d ≥ 3, seeking
to provide a theoretical framework for real world applications, which often are in 3-
dimensional space as opposed to the plane. This definition has the following intuitive
meaning: a graph is persistent if, provided that all the agents are trying to satisfy their
distance constraints, the global structure of the formation is preserved, i.e. when the
formation moves, it necessarily moves as a cohesive whole. We will see thatrigidity
of the underlying undirected graph is a necessary but not sufficient condition. This
will lead us to the notion of constraint consistence of graph, which is the additional
condition for a rigid graph to be persistent. Intuitively, agraph isconstraint consistent
if every agent is able to satisfy all its distance constraints provided that all the others
are trying to do so. We will then show that a graph is persistent if and only if it is rigid
and constraint consistent.

In Section 3, we generalize some of the main properties of persistent graphs to 3-
or high dimensional graphs, drawing on established resultsin ℜ2.

In Section 4, we reason about the persistence ofclosed subgraphsof persistent
graphs and use this reasoning to analyze the directed paths in persistent graphs. As
results of this analysis, we present some further properties of persistent graphs and an
easily checkable necessary condition for persistence.

The paper is ended with the concluding remarks in Section 5. Note that all the
proofs in the paper are omitted because of space limitations. However, a full version
of this work together with the companion paper [7] is available in preprint from the
authors.

2 Rigidity and Persistence

In [6], rigidity, persistence, and some other related notions have been defined for di-
rected graphs inℜ2. In this section, we generalize these definitions to be applicable
for any spaceℜd, d ∈ {1, 2, 3, . . .}. Some of the terms we use such as “rigidity” are
undirected notions, i.e., notions that are defined for undirected graphs. These notions,
however, apply to directed graphs as well, e.g., we call a directed graph rigid iff its un-
derlying undirected graph is rigid. Note that, in directed graphs, rigidity and the other
undirected notions are not affected by modification of the edge directions.

In ℜd (d ∈ {1, 2, 3, . . .}), arepresentationof an undirected graphG = (V,E) with
vector setV and edge setE is a functionp : V → ℜd. We say thatp(i) ∈ ℜd is the
positionof the vertexi, and define the distance between two representationsp1 andp2

of the same graph by

d(p1, p2) = max
i∈V

||p1(i) − p2(i)|| .



A distance set̄d for G is a set of distancesdij > 0, defined for all edges(i, j) ∈ E.
A distance set isrealizable if there exists a representationp of the graph for which
||p(i) − p(j)|| = dij for all (i, j) ∈ E. Such a representation is then called arealiza-
tion. Note that each representationp of a graph induces a realizable distance set (defined
by dij = ||p(i) − p(j)|| for all (i, j) ∈ E), of which it is a realization.

A representationp is rigid if there existsǫ > 0 such that for all realizationsp′ of
the distance set induced byp and satisfyingd(p, p′) < ǫ, there holds||p′(i) − p′(j)|| =
||p(i) − p(j)|| for all i, j ∈ V . (We say in this case thatp andp′ arecongruent). A
graph is said to begenerically rigidif almost all its representations are rigid. Note that
the reasons for which we only require almost all representations to be rigid instead of
all of them will be detailed in Remark 1.

As mentioned above, rigidity is an undirected notion, and istherefore insufficient to
characterize persistence. As noted in [6], rigidity of a representation only means that if
an external observer (or some physical properties) makes sure that the distance between
the positions of any pair of vertices connected by an edge remains constant, then all the
sufficiently close realizations of the induced distance setare congruent to each other.
But, in a typical system of autonomous agents, there is no such external observer. Each
agent is only aware of its own distance constraints, and can “move freely” as long
as these particular constraints are satisfied. For example,agents that have only one
constraint can move along a hyper-sphere centered on the position of the only other
agent of which they are aware. So, it could happen that because one agenti is moving
on such a hyper-sphere, it becomes impossible for another agent j to satisfy all its
constraints, especially ifj hasd + 1 or more constraints. So, in order to have a more
formal definition of persistence, we first need to characterize the fact that each agent is
trying to keep the distances from its neighbors constant.

Let us thus fix a directed graphG = (V,E) depicting a point-agent system archi-
tecture, where each agent corresponds to a vertex inV , and for each agent (vertex) pair
i, j there is a directed edge

−−→
(i, j) ∈ E from i to j if i has a constraint on the distance

it must actively maintain fromj. Let us also fix desired distancesdij > 0, ∀
−−→
(i, j) ∈ E

and a representationp. We say that the edge
−−→
(i, j) ∈ E is activeif ||p(i) − p(j)|| = dij .

We also say that the position of the vertexi ∈ V is fitting for the distance set̄d if it is
not possible to increase the set of active edges leavingi by modifying the position of
i while keeping the positions of the other vertices unchanged. More formally, given a
representationp, the position of vertexi is fitting if there is nop∗ ∈ ℜd for which the
following strict inclusion holds:

{
−−→
(i, j) ∈ E : ||p(i) − p(j)|| = dij} ⊂ {

−−→
(i, j) ∈ E : ||p∗ − p(j)|| = dij} (1)

This condition intuitively means that the agenti cannot satisfy additional distance con-
straints without breaking some that it already satisfies, asshown in the two-dimensional
example in Figure 2, which is drawn from [6]. A representation of a graph is afitting
representation for a certain distance setd̄ if all the vertices are at fitting positions for̄d.
Note that any realization is a fitting representation for itsdistance set.

We can now give a formal definition of persistence: A representationp is persistent
if there existsǫ > 0 such that every representationp′ fitting for the distance set induced
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Fig. 1. Suppose thatd41 = d42 = d43 = c. The position of 4 in (a) is not fitting because it only
makes

−−−→
(4, 1) active while there exists a position that would make both

−−−→
(4, 1) and

−−−→
(4, 3) active. On

the other hand, its position in (b) is fitting because no point can be at the sametime at a distance
c from 1, 2 and 3.

by p and satisfyingd(p, p′) < ǫ is congruent top. A graph is thengenerically persistent
if almost all its representations are persistent.

One can show that a generically persistent graph is always generically rigid. A suf-
ficient condition for a generically rigid graph to be generically persistence is the generic
constraint consistence. A representationp is constraint consistentif there existsǫ > 0
such that any representationp′ fitting for the distance set̄d induced byp and satisfying
d(p, p′) < ǫ is a realization of̄d. Intuitively, the constraint consistence of a representa-
tion means that if each agent tries to satisfy its distance constraints (i.e., is at a fitting
position), then all the distance constraints will be satisfied, or equivalently, no agent
will be in a situation where it cannot satisfy some constraint. The illustration of such a
situation inℜ2 can be found in [6]. Again, we say that a graph isgenerically constraint
consistentif almost all its representations are constraint consistent.

We have the following useful equivalences for directed graphs in anyd-dimensional
spaceℜd (d ∈ {1, 2, 3, . . .}), which have already been established forℜ2 in [6].

Theorem 1 A representation inℜd (d ∈ {1, 2, 3, . . .}) is persistentiff it is rigid and
constraint consistent. A graph inℜd (d ∈ {1, 2, 3, . . .}) is generically persistentiff it is
generically rigidandgenerically constraint consistent.

Remark 1 In our definitions of generic rigidity, persistence and constraint consistence,
a graph has a generic property if almost all its representations have the property. Some
discussions on using “generic” and “almost all” can be foundin [6, 8]. One reason
for using these terms, inℜd (d ∈ {1, 2, 3, . . .}), is to avoid the problems arising from
havingd+1 or more vertices lying on ad1-dimensional hyper-surface whered1 ≤ d−1.
In the sequel, we avoid the use of “generic”.

3 Characterization of Persistent Graphs

In this section, we examine the properties of persistent graphs in three and higher di-
mensions, and present the fundamental results related to persistence. These results are
comparable to the properties of two-dimensional persistent graphs presented in [6], and



hence the corresponding propositions and lemmas are given as generic ones that are
applicable toℜ2 as well.

We begin the characterization of persistent graphs by giving a lower bound on the
number of active edges, and a sufficient condition for a graphto be constraint consistent.
In the sequel,d−(i) and d+(i) designate respectively the in- and out-degree of the
vertexi.

Lemma 1 Let i be a vertex of a graphG = (V,E). For almost all representations
p of G, there existsǫ > 0 such that in every representationp′ ∈ B(p, ǫ) (i.e., such
that d(p, p′) < ǫ) fitting for the distance set induced byp, the number of active edges
leavingi is at leastmin (d, d+(i)). Consequently, a graph in which all the vertices have
an out-degree smaller than or equal tod is always constraint consistent.

The next proposition which is the generalization of Propositions 1 and 2 in [6] for
any arbitrary dimensiond ∈ {1, 2, 3, . . .}, allows us to delete edges in a persistent
(constraint consistent) graph and maintain persistence (constraint consistence).

Proposition 1 A persistent graph inℜd (d ∈ {1, 2, 3, . . .}) remains persistent after
deletion of any edge

−−→
(i, j) for whichd+(i) ≥ d + 1. Similarly, a constraint consistent

graph inℜd (d ∈ {1, 2, 3, . . .}) remains constraint consistent after deletion of any edge
−−→
(i, j) for whichd+(i) ≥ d + 1.

An interesting corollary of Proposition 1 concerns the total number of degrees of
freedom. Thenumber of degrees of freedom (DOF count)of a vertex is the maximal
dimension, over all representations of the graph, of the setof possible fitting positions
for this vertex. For example, inℜ3, the DOF counts of the vertices with zero, one, and
two out-degrees are respectively 3, 2, and 1; all the other vertices have zero DOF. The
following result provides a natural bound on the total DOF count, i.e., the sum of the
vertex DOF counts of a persistent graph.

Corollary 1 The total DOF count of a persistent graph inℜd (d ∈ {1, 2, 3, . . .}) can
at most bed(d + 1)/2.

Remark 2 There ared-dimensional persistent graphs having a total DOF count less
thand(d + 1)/2. Figure 2 shows a three-dimensional persistent graph each vertex of
which has 1-DOF. The total DOF count for this example is5, i.e., less than3(3 + 1)/2.

As stated in Proposition 1, a persistent graph remains persistent after deletion of any
edge

−−→
(i, j) for which d+(i) ≥ d + 1. After successive deletions, we can thus reach in

this way a persistent graph whose vertices all have an outgoing degree that is smaller
than or equal tod. In the next theorem, which is analogous to Theorem 3 in [6] stated
for ℜ2, we see that a graph is persistent if and only if all the graphsobtained in this way
are rigid. This criterion allows us to note that a graph obtained by adding an edge to a
persistent graph is not necessarily persistent, as shown onthe example in Figure 3.

Theorem 2 A d-dimensional graph is persistent if and only if all those subgraphs are
rigid which are obtained by successively removing outgoingedges from vertices with
out-degree larger thand until all such vertices have an out-degree equal tod.



 

Fig. 2. A persistent graph inℜ3 with all the vertices having out-degree 2 and hence 1-DOF.

Theorem 2 provides a non-polynomial time algorithm to checkthe persistence of
anyd-dimensional graph ford ∈ {1, 2, 3, . . .}: It is sufficient to check the rigidity of all
subgraphs obtained by deleting the edges leaving vertices with out-degree larger than or
equal tod + 1 until all the vertices have an out-degree less or equal tod. An algorithm
with a smaller complexity would be useful in the case of largegraphs, especially if there
is a high number of vertices with high out-degrees, but no such algorithm is currently
available. More discussions on determining the persistence of two-dimensional directed
graphs in polynomial time can be found in [6]. Moreover, [7] presents results leading
to a quadratic time algorithm for the cased = 3 for cycle-free graphs, which can be
generalized easily to anyd ∈ {1, 2, 3, . . .}.

(a) (b) (c)

Fig. 3. The two-dimensional graph represented in (a) can be obtained by adding an edge to the
persistent graph (b). However, by Theorem 2, it is not persistent because the subgraph represented
in (c) is not rigid. In the corresponding multi-agent system, this could arise from a combination
of unfortunate information architecture selections for the three agents ofthe cycle.

4 Closed Subgraphs and Directed Paths

In this section, we focus on the directed paths in persistentgraphs and analyze some
related properties. As a part of this analysis, we reason about the persistence ofclosed
subgraphsof persistent graphs. An important outcome of our analysis will be an easily
checkable necessary condition (Proposition 3) for persistence. Note that the proofs of
many results concerning closed subgraphs rely on the properties of minimally persistent



graphs, i.e., persistent graphs for which no single edge canbe removed without losing
persistence. These properties were omitted here due to space limitation, but a extended
studies of minimal persistence and its connections with theanalogous notion of mini-
mal rigidity can be found in [6] or in the full version of this work, available in preprint
from the authors.

Consider a directed graphG = (V,E) in ℜd (d ∈ {1, 2, 3, . . .}) and a subgraph
G′ = (V ′, E′) of G. G′ is called aclosed subgraphof G if for any vertexi ∈ V ′,
−−→
(i, j) ∈ E impliesj ∈ V ′ and

−−→
(i, j) ∈ E′. From the perspective of autonomous agent

formations, the agents corresponding to the vertices ofV ′ are unaware of the existence
of those ofV \ V ′. We call thentotal DOF count ofV ′ with respect toG the sum of
the DOF counts of all the vertices ofV ′. Using these notions, we reach the following
proposition.

Proposition 2 Let G = (V,E) be a persistent graph inℜd (d ∈ {1, 2, 3, . . .}) having
at leastd vertices. If a vertexv ∈ V belongs to a closed subgraph ofG containing
less thand vertices, the out-degree ofv has to be smaller than or equal tod − 2. For
the setVc of all such verticesv, we have|Vc| ≤ d − 1. On the other hand, any vertex
v′ ∈ V that does not belong to any closed subgraph ofG having less thand vertices
is connected by a directed path (leavingv′) to all the vertices ofG with positive DOF
count.

Remark 3 Given a directed graphG = (V,E) in ℜd (d ∈ {1, 2, 3, . . .}), for any
vertexi ∈ V , there exists a certain closed subgraph ofG containingi, which we call
the reachability subgraph ofG for i. For a giveni ∈ V , the reachability subgraph of
G for i can be formally defined as the subgraphG′ = (V ′, E′) of G whereV ′ is the
set of all the vertices that can be reached fromi (including the vertexi) by a directed
path inG andE′ ⊆ E is the set of all the edgese such thate joins a pair of vertices in
V ′. It is easy to see that the reachability subgraph ofG for the vertexi is the smallest
closed subgraph ofG containingi, and equivalently, the intersection of all the closed
subgraphs ofG containingi.

The following corollary, which immediately follows from Proposition 2, gives a
more explicit criterion to check the existence of a directedpath between given two
vertices of a persistent graph inℜ3, one of which has a positive DOF count.

Corollary 2 LetG = (V,E) be a persistent graph inℜ3 having at least 3 vertices. Any
vertexi is connected by a directed path (leavingi) to all the vertices ofG with positive
DOF countunless one of the following holds:

1. i is a first leader, i.e.,d+(i) = 0.
2. i is a first follower, i.e.,d+(i) = 1 and there exists aj ∈ V such that

−−→
(i, j) ∈ E

andd+(j) = 0.

Using the above propositions about closed subgraphs and directed paths in persis-
tent graphs, we reach the following easily checkable necessary condition for persis-
tence. The detailed derivation of the criterion can be foundin the full version of this
work, which is available in preprint from the authors.



Proposition 3 Let G = (V,E) be a persistent graph inℜd (d ∈ {1, 2, 3, . . .}) with at
leastd vertices. Then all the closed subgraphs ofG having more thand−1 vertices are
persistent.

In ℜ3, Proposition 3 leads to the following corollary.

Corollary 3 Let G be a persistent graph inℜ3 with at least three vertices. Then any
closed subgraphG′ of G is persistent unlessG′ consists of two disconnected vertices.
In other words,G has a non-persistent closed subgraph if and only if it contains two
vertices each having 3 DOFs.

5 Concluding Remarks

In this paper, we have generalized the notion ofpersistencegiven in [6] for 2-dimensional
directed graphs to dimensions higher than two, seeking to provide a theoretical frame-
work for real world applications, which often are in 3-dimensional space. We have veri-
fied that many of the properties already established for persistent graphs inℜ2 are valid
for higher dimensions as well. We have also analyzed the directed paths in persistent
graphs, exposed some further properties of such graphs in three or higher dimensions,
and given an easily checkable necessary condition (Proposition 3) for persistence. In
the companion paper [7], we analyze the “partial equilibrium problem”, a problem ob-
served in some persistent formations associated with feasibility of satisfying all the
constraints on all the agents simultaneously. We provide some criteria to check whether
a given persistent graph suffers from the partial equilibrium problem.
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