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Abstract. Nowadays, approximately 35% of the population suffers problems in
the feet. In many cases, some foot pathologies are treated by means of especial
insoles. These insoles require customisation for the success of their treatment.
However, there is a great lack of knowledge in this sector. As an initial step it

is essential to develop a new objective tool capable to classify among the dif-
ferent foot pathologies. In this paper we present a system to classify different
foot pathologies which uses the Nearest Neighbor (NN) classification rule based
on weighted metrics and prototypes selection. The system uses as input data the
pressure distribution over the foot plant.

1 Introduction

In the developed countries, approximately 35% of the population suffers problems in the
feet enough serious to need medical attention. The illnesses of the feet are recognised
as a great social problem in most of these countries, being most of the people affected
women. A high percentage of the population of the European Union over 40 years old
has some type of problem in their feet (above 90% in Spain, United Kingdom, Germany
or Holland).

In many cases, some foot pathologies are treated by means of especial insoles whose
principal aim is to protect the feet against external aggressions (overpressures, shear
forces, etc.) and to maintain the articulations in a suitable anatomical position. These
insoles require customisation for the success of their treatment. However, there is a great
lack of knowledge in this sector. On the one hand, there is not information regarding
the best orthetic solution depending on the pathology. On the other hand, in the health
area the final adaptation of the insole to the patient highly depends on the specialist
experience and on the capability of the patient to transmit the problems to the orthotics
use. This lack of knowledge, together with a low technology in the design process,
causes that the orthotics customisation process is performed at present without objective
criteria and in a traditional way which implies a process with low efficiency.
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Therefore, as an initial step and taking into account therinftion presented above,
it is essential to develop a new objective tool capable tesifp among the different
foot pathologies, disorders or problems in order to optinaisd focus the strategies of
design to improve treatments and footwear functionality.

In this paper we present a system to classify different fati@ogies from pressure
distribution over the foot plant during walking. For thisrpase, we compare the
Nearest Neighbor (kNN) classification rule using the welbwn Euclidean Distance
with the 1-NN classification rule improved by thieearning Prototypes and Distance
(LPD) method [1, 2]. While at section 2 we present the LPD methodeeticn 3 is
shown the database used in the experiments presentediahskct

2 Methodology

The Nearest neighbor (NN) classification rule has succhgsfeen used in many pat-
tern recognition applications. The good behaviour of thle with unbounded number
of prototypes is well known. However, in many practical sifisation problems only a
small number of prototypes is usually available.

The NN performance can be improved by using appropriatalgéd distance mea-
sures of metrics. Improvements can be particularly sicanifi¢or small prototype sets.
Trained metrics can bglobal (the same for all the prototypes [3—8]ass-dependent
(shared by all the prototypes of the same class) [6-8] aridéatly-dependent (the
distance measure depends on the particular position ofriitetppes) in the feature
space [9-12].

More concretely, in this work we have used (comparing withviell knownEuclid-
ean Distance) the approach calledearning Prototypes and distances (LPD), proposed
in [1, 2]. It stars with an initial selection of a small numlzgirandomly selected proto-
types from the training set. Then it iteratively adjustshbibie position (features) of the
prototypes themselves and the corresponding local-mes#iights, so that the resulting
combination of prototypes and metric minimises a suitabter&tion of the probabil-
ity of classification error. The adjustment rules are detivg solving the minimisation
problem through gradient descent.

2.1 Approach

LetT = {x1,...,xn} be atraining set; i.e., a collection otraining vectors or class-
labelled pointsx; € E,1 < i < N in a suitableepresentation space. In our case, each
training vector (prototypek; represents each subject. The components of this vector
are the pressure values of the subject’s plant foot acqtrioeta specific sensor. Being
M the number of available plant foot sensors, the trainingorec; € R, that is the
representation spadé = R . Each prototype belongs to a particular class, am@ng
different classes, being each class a different foot pagyol

The goal of the LPD algorithm is to use to obtain a reduced set pfototypes,
P ={yi,...,yn} C E,n < N, and a suitableveighted distanced : £ x P — R
associated t@, which optimise the Nearest Neighbor (NN) classificatiorfgrenance.
Initially P is a subset of’ randomly selected.
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The weighted distance from an arbritrary vectox € FE to a prototypey; € P is
defined as:

M
dw (x,y:) = szzj(xj — Yij)? )
j=1

wherew;; is a weight associated with the featyref the prototypey;. That is, in our
problem,w;; is the weight associated with the plant foot sensdrhese weights can
be represented as &h x M weight matrixiW = {w;;, 1<i<N,1<j<M}. Inwhat
follows, whenever the weight matri¥” can be understood from the contefy (x, y;)
will be simply denoted ad(x, y;).

Note that this definition assigns separate weights to tHierdifit dimensions dea-
tures of the representation space. Note also that it is asymmaiididocal in that it
depends on the particular position of eggh

Learning the Prototypes and their Weights In order to find both a matri¥/ and a
suitable reduced set of prototypEshat results in a low error rate of the NN classifier,
we propose minimise a criterion index which is an approxiomato the NN classifica-
tion error of 7" using P andd(-, -). This NN error estimate can be written as:

J(P,W) = % 3 step (;ﬁ’y’;ﬁ;) )

where thestep function is defined as

O i
W\ il

andyy, yZ € P are, respectively, theame-class and different-class NNs of x. Note
that each term of the above sum (2) involves two differentqiypesy Z, y7, and their
associated weights.

As in previous work [13, 14, 8, 15], a gradient descent praced used to minimise
this index. This required to be differentiable with respect to all the parameters to be
optimised; i.e.y;; andw;;, 1 <1i < k, 1 < j < M. Therefore some approximations
are needed. First, thetep function will be approximated by usingsigmoid function,

defined as: .

Sp(2) = ) )
With this approximation, the proposed index becomes:
1
JPW) = — 3 Ss(r(x)) @)
xeT
where r(x) = 7d(x’y§) (5)
d(X7 Yx )

Clearly, if 3is largeSs(z) ~ step(z), Vz € R, and this approximation is very accurate.
On the other hand, i is not so large, the contribution of each NN classificatiaer
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(or success) to the index depends upon the corresponding quotient of the distances
responsible for the error (or the success). As will be diseddater, in some cases this
can be a desirable property which may makedigenoid approximation preferable to
the exacstep function. The derivative of3(-) will be needed throughout the paper:

, dSs(z) Bef=2)
Ss2) = — T (1+ ePaR))2 ©)

S4(z) is a “windowing” function which has its maximum far = 1 and vanishes for
|z — 1] >> 0. Note that if 3 is largeS ;(z) approaches the Dirac delta function, while
ifitis small S ’ﬁ(z) is approximately constant for a wide range of values.of

To obtain the partial derivatives from (4-5), required foadjent descent, it should
be noted that’ depends orP andW through the distanced, -) in two different ways.
First, it depends directly through the prototypes and wisigivolved in the definition
of d(-,-) (1). The second, more subtle dependence is due to the fdctfdhasome
x € T,y5 andyZ may be different as prototype positions and their assatiagights
are varied.

While the derivatives due to the first, direct dependence eateleloped from (4-5),
the secondary dependence is non-linear and is thus morkepratic. Therefore a sim-
ple approximation will be followed here by assuming that skeeondary dependence
is not significant compared to the direct one. In other wongswill assume that, for
sufficiently small variations of the positions and weighit& prototype neighborhoods
remain unchanged. Correspondingly, we can derive fromr{d)4-5):

aJ 1 / (Y — i) 2
~ — Sa(r(x)) r(x) —0———+ wj;
ous 2y, SACNTEO gy v
index(y ) =1
£
1 , (Y — %)
-= Sp(r(x)) r(x) —r———— wy O
n V;T: d2(X7yf) !
index(yf):i
aJ - 1 / (y;] _xj)2 .
owe > SHrE)r(x) Pxyz) Y
J VxeT:
index(y ) =1
# 2
1 , (Yx; — @5)
'~ Sp(r(x) r(x) —I——— wi; (8)
n VXZET: dz(x’ yf) '
inde((yf):i

wherer(x) andS 5(-) are as in (5) and (6), respectively. Using these derivateads
to the corresponding gradient descent update equationmyflesmanner to implement
these equations is by visiting each prototywm 7' and updating the positions and the
weights associated with tleame-class anddifferent-class NNs of x.

The effects of the update equations in tHeD algorithm are intuitively clear. For
each training vectox, its same-classNN, y; = y3, is moved towards, while its
different-classNN, y;, = y7, is moved away fronx. Similarly, the feature-dependent

X!
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weights associated wijyr; are modified so as to make it appear closet io a feature-
dependent manner, while thoseygf are modified so that it will similarly appear farther
from x. Since these update steps are weighted by the distancer(atjo their impor-
tance depends upon the relative proximityxaio y or y7. This is further divided by
the corresponding squared distance, thereby reducingpiii@te importance for large
distances. Finally, the resulting steps ai@dowed by the derivative of the sigmoid
function applied to the distance ratigix). This way, only those prototypes (and their
weights) which are sulfficiently close to the decision bouigdaare actually updated.

3 The Database Description

For the classification of the foot problems, pressure distion over the foot plant
during walking was used (figure 1). To acquire the plantasguee distribution, the
Biofoot®IBV pressure insoles were used (figure 1). The structureeptiessure files
(plain text) exported by the application BioféiBV is based on a matrix with as many
rows as the sample frequency and the duration of the tesedéfire number of columns
will depend on the number of sensor of the instrumented @solour casé4. So, for
each subject (each training vectarand for each foot, we have a matrix in the form:

Tty1 Tty2 -+ Tt164
Ttal Tte2 - -+ Tty64
xtpl xtFQ .. wtp64

beingx.,; the registered pressure by the sensorthe timet,. ¢ From the matrixes
we compute the average pressure for each sensor from edcthfras:

Zf:l Lt;s
F

As there is a matrix for each foot, we built each training veeis:

rg =

Xsubject = (1‘1 T2 ... T4 LG5 - - - 25128)

Beingz; from right foot whenl < i < 64 and from the left one wheb < i < 128.
Note thatE = R'?%. Note also thak,sjcct, IS the training vector acquired from the
subjectA and the database can be represente@ as:{Xsupjcct,; - - - » Xsubjecty -

As it is said above, the database is acquired by the BiSfi®¥. It is a tool that
has been developed by thestitute of Biomechanics of Valencia and it consists of a
flexible insole with up to 64 piezoelectric ceramics (figujedistributed according to
foot physiology in such a way that a greater density of sensoplaced under bony
areas where the pressure uses to reach the highest valuek; amthe heel and the
metatarsal heads.
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Fig. 1. Example of pressures (left) and Biof&dBV Insole (center and right).

Biofoot® BV allows the study of the foot pressures during the nornaaiditions,
walking and wearing shoes. Besides, by means of a telemgedtgra the signal is trans-
mitted wireless to a PC, where it is saved (figure 2). On therdtland, and in order to
avoid the effect in pressure values of the walking speed,piaaiocell barriers placed
at a known distance were used. This procedure permits teand®ers to remove the
trials out of the interval [1,1.5] m/s, which defines the nahspeed gait.

Fig. 2. Biofoot®IBV Use.

In order to obtain a representative sample of the foot problom a statistically
point of view, 60 subject of heterogeneous characteristics carried outridle tvith
their usual footwear. A specialist in foot diseases classifiiem in different groups of
pathologies (a class label) after an exhaustive evaluatianking in this way, for each
subject we obtain a labelled training vector. The path@sgiiagnosed were:

— Rheumatoid arthritis.

— Pain in the heel or in other foot parts different of plant.
— Plantar foot pain.

— Hallus Valgus (bunion).

— Hemiplegia.

— Neuropathic foot.

— Degenerative problems of the Central Nervous System.
— Diabetic foot.

Consequences of fractures.

Due to the high incidence ¢fain in the heel or in other foot parts different of plant
andPlantar foot pain, and the fact that the 85% of the subjects were classifiederti
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these groups, the study was only focused on these pathsl@&gsides, in the database
the other pathologies has not a number of subject as gre@&passentative for this
work. So, the used database is composed®gubjects, that is49 training vectors,
that are included in the two pathologies mentioned abbvdabelled subjects as “Pain
in the heel or in other foot parts different of plant” aslas “Plantar foot pain”).

4 Experiments

The experiments were carried out with the Biof8tBV database. Only two classes
were taken into account, as is mentioned above. The clagsificerror of the proposed
method (LPD) is compared with the classification error ofwhedl known £-NN rule
based on th&uclidean Distance. This error is estimated using the well knoweaving
One Out (LOO) estimation procedure due to the reduced number of avaitediteng
vectors. In LOO, givenV labelled training vectors, two prototypes sets are builthe
first one, calledraining set, we includeN — 1 vectors and the other vector is included
(only it) in other set calledest set. This process is repeat@dtimes, each one including
a different vector in the test set and the oth&ts- 1 in the training set. So, we di
different experiments; each one with different trainingd é&st sets. In each experiment,
we train a classifier with the training set and test its penfamce with the test set. The
idea is to work as we did not know the real label of the testarethat is; the real
pathology of the subject that corresponds with this vecod see if the classifier is
able to find the class. The final result is the average oveithests.

Results are shown in table 1. As can be seen, LPD results eithced training
set and local weighted distances, are better than Euclibéstance with the whole
training set results. The best result with LPD is obtainetlioing the training set to
3 prototypes per classd4.3 % error rate), this result is a improvement 24f % over
the best results obtained usikgNN with the Euclidean distance and all the training
prototypes (8.4 %). The LPD with a reduced set of the vectors is able to imprbee t
classification error in front of the original training set.

Table 1. k-NN error rate using Euclidean distance with differéntalues (left) and-NN LPD
error rate for different prototypes per class (right).

R Error e Prototypes per class Error Rate

¥ 4 T
3 28.6% 2 16.3%
4 245% 3 14.3%
5 408 % 4 16.3%

These results are still worse than those given by an expbithvobtains aboui%
error rate. This relative bad result of the automatic methisddue to the low num-
ber of samples available to learn adequately the classhdistms. Also, the proposed
preprocessing step takes the average of all the pressares thle time loosing some
important temporal relations that are present in the planindg walking. We hope to
improve the error rate in future works with more training gdes and the use of other
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classification methods, as Hidden Markov Models (HMM), whatlows us to treat the
foot plant pressures assaquence of pressure vectors.

5 Conclusions and Future Work

A system to classify different foot pathologies, from pregsdistribution over the foot
plant, has been presented. For this purpose, the Nearggtlhéei(NN) classification
rule using the Euclidean Distance and the NN classificatit@improved by the LPD
method have been compared. The LPD obtained the best datisifi results with a
(14.3 % error rate), ar20% of improvement over the NN rule using the original train-
ing set and the Euclidean distance. Future work will focusbtaining more samples
and using appropriate classification models (Hidden MaModels) that allows us to
process the pressure of the foot plant as a temporal seqoépoessures.
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