A Hybrid Evolutionary Probablistic Framework for
Developing Robotic Team Behaviors

Edward Newett and Ashraf Saad

! Georgia Institute of Technology, School of Electrical and Computer Engineering
Atlanta, Georgia 30332, USA

2 Georgia Institute of Technology, School of Electrical and Computer Engineering
Savannah, Georgia 31407, USA

Abstract. One of the inherentissues in team-based multiagent robotics is coordi-
nating a cooperative task decomposition. Use of explicit communication models
or game theoretic approaches to model teammate behaviors can be costly and
error-prone. This paper describes a method of discovering a set of behaviors that
allows a team to intrisically function in a collaborative manner. Probabilistic plan-
ners based on spreading activation networks that determine these behaviors are
implemented in each robot. A genetic algorithm is used to find the appropriate
link strengths within each of these networks to produce an overall dynamic team.
It is shown that a team controlled by spreading activation networks can perform
well as a team by maintaining these behaviors in environmental situations other
than the one used for GA evolution. From this framework, a goal-directed task
planning approach can be envisioned to deploy a fully functional robot team.

1 Introduction

Many applications in robotics focus on the design of a single agent capable of solving a
complex problem. However, certain domains may be better suited for a team of robots.
There are several reasons common to various scenarios in which multiple robots may
be better than one [1]. Multiple robots are capable of being in several places at the same
time and can perform distributed action in parallel. A team can coordinate the decom-
position of a problem by effectively breaking it down into multiple subproblems. In a
task like exploration or foraging, multiple robots can learn the environment and explore
more of it in less time than a single robot. Finally, multiple robots can be designed to
be less complex than a single robot given the same task.

One way of producing a cooperative relationship between team members is by as-
signing a specific goal to each member. This method likely requires an explicit decom-
position of the task the agents are collaborating upon. In some tasks, a team of robots
may not be capable of explicity communicating this decomposition with one another,
either because of communication issues or due to the complexity of the problem includ-
ing robot interference.

Newett E. and Saad A. (2005).

A Hybrid Evolutionary Probablistic Framework for Developing Robotic Team Behaviors.

In Proceedings of the 1st International Workshop on Multi-Agent Robotic Systems, pages 88-101
DOI: 10.5220/0001196500880101

Copyright © SciTePress

It is desirable to show that if each team member instead églalrertain behavior
conducive to solving a certain part of a problem, and therenéam consists of be-
haviors that mutually complement each other, then the agmmt collectively solve the
problem without being assigned explicit subgoals.

This paper focuses on designing a framework to develop thavers of individual
robots that comprise the team by developing a Bayesian mietwithin each robot
that captures the correlation between actions of the raftlze observed state of the
environment. These behaviors are generated through alyplieba planner within each
robot. The probabilistic planner is implemented as a spngaalctivation network over
the Bayesian network, such that condition-action-effeccess likelihoods are based
on what is known about the current state of the environmesthBplanner will have
different link strengths between an action and its relatiioem environmental condition,
and the goal is to develop the link strengths of each plarmasgo produce an overall
desirable team behavior.

In order to demonstrate this conceptual framework, an éxgetal simulation test-
bed is built comprising several robots dispersed in a fieltaiaing a certain number
of light sources. The goal is to locate as many light sourses possible within a pre-
specified amount of time. This specific task is better suitgchfteam of robots since
the area to be covered can be divided and explored more gugkihe whole team.
The problem of effectively coordinating team behavior ines subproblems such as
minimizing robot interference and overlap of work betweebats.

A fundamental issue then arises: how are the link strengthkeospreading ac-
tivation network determined for each robot? The large deapace of potential link
values for each robot, and for the team as a whole, makesthilptige from a com-
putational standpoint to perform an exhaustive searchrefbie, a search based on
genetic algorithms (GA) is employed. The GA searches fdective action sequences
to produce collective team behaviors that maximize exgilamand localization of light
sources. From the evolved team, condition-action vectoperenced during simula-
tion are recorded and used to seed the link strengths betvetiens and possible effects
within the spreading activation networks. Each team membeuld experience a dif-
ferent section of the environment for effective decompassibf the task at hand, and
the corresponding condition-action vectors are then cagtto yield the desired team
behavior.

2 Background Work

The majority of the spreading activation task planner desdased on a probabilistic
planner developed by a team at Vanderbilt University [2]Japdred control architecture
is designed based on work related to the DAC5 control sysg8jmided in a similar
foraging task. Many design choices were made when devejdhis particular multi-
agent system, each with their own tradeoffs [4]. A few of theadeoffs are identified
and examined next.

2.1 Team Learning Versus Concurrent Learning

In some cases, team learning refers to an implementatiomtl@ves a single, central
learner. On the other hand, in concurrent learning, legragturs in each robot. In this
case, learning is distributed as tends to be the case in neahenvironments where
learning takes place online; i.e., while the robots are aijrgy. This case enables robots
to learn separate tasks or subtasks.

In this work, a GA is used where genes comprise the actioneseguused by each
robot during simulation. The performance of each robot &@wated by the fitness func-
tion. The population of genes is broken down so that a sepatdipopulation of genes
is dedicated to evolve the action sequence for a given robot.

2.2 Evolving a Team to Solve a Common Problem

Using an evolutionary technique, such as GAs, depends omimigf fitness function.
The task of evolving robots for exploration as opposed tatiog an item is primar-
ily specified in the GA through the fitness function. Once anfeavork is set up for
multiple agents to learn a specific task, the desired pedoo® can be altered to an-
other task by changing the fitness function. Given a commaed# function with the
proper constraints, a GA will search for a team that naturddicomposes a problem
into subproblems.

3 Forming Effective Teams:. A Hybrid Approach

Choose Genes

TEAM SELECTION Si
SIMULATION Store AC Vectors

|

FITNESS EVALUATION _Store Team Fitness

SUBPOPULATION

GA POPULATION

Done? .
Retrieve AC vectors

from best team

BUILD PROBABILITIES

|

SIMULATION WITHSA ~+——— INITIALIZE SA NETWORKS

Repeat n time steps

Fig. 1. Block diagram of the hybrid approach.

Figure 1 outlines the major steps of the framework designéiis$ work. Initially, a
genetic algorithm is used to search for collective actiaquseces that maximize team
performance. This involves repeating the steps of teancts@he simulation, and fitness
evaluation until an appropriate team is identified. Theometiondition vectors and team

fitness values are stored for each generation, and folloewotution, the vectors which
represent the best evolved team are used to build proledilitepresented by link
strengths) within each spreading activation network.

These link strengths distinguish behaviors among the sol®ll other aspects of
the spreading activation networks are identical betwed&otsy along with designer-
specified goals. Once the spreading activation networksénéralized, each robot is
controlled through a reactive and adaptive layered approac

3.1 Employing a Genetic Algorithm

Producing good overall team performance depends on detexgnihe link weights
of the spreading activation network for each robot. Givem lHrge search space for
potential values, a GA was chosen as the search mechaniimugh a GA could be
used directly to find these link strengths, the approachntéke use the GA to evolve
the action sequences of the team. Searching for action segsiés likely a more direct
and time efficient search since the genes of the GA consigtaint possible actions.
The link strengths are encoded in the genotypes of the GAgusial values ranging
between [-1 and 1]. Therefore, with a small and static setoskible values for each
allele, convergence times could be drastically reducedfufiher reduce the search
complexity, genes are divided into subpopulations, witthesubpopulation maintained
for a separate robot.

3.2 Using GA Subpopulations

In general, by partioning a population of genes into subfaimns, a variety of new
possibilities emerge. If each individual of a subpopulaii® only mated with another
member of the same subpopulation, then the structures betagbpopulations can
vary. This gives rise to different species of genes and alifaw a simple way to keep
track of which individuals can pair with which others duricgpssover. Other methods
of maintaining species include assigning an innovationmemfs], which would allow
for multiple species to coexist within a subpopulation. gafulations are mainly used
in this experiment to allow each robot to develop a diffetegttavior and to allow the
decomposition of the problem. Each robot is assigned afépsubpopulation through-
out the evolution process. In this way, the subpopulationgéch robot may converge
towards different subgoals, resulting in the desired iniplask decomposition. Within
each subpopulation, individuals are assigned fitness sdlased on performance dur-
ing simulations. Additionally, a team fitness value is maiin¢d for every group of
individuals used together in each simulation run. This té&mess value is used to pro-
duce cooperative behavior: a combination of individuaét therform well together by
exhibiting task decomposition is given a higher team fitnedge.

3.3 Spreading Activation Networks

A spreading activation network as used in this work is a cotioeist type network in
which layers of nodes represent either possible action®ssible states of the envi-
ronment as perceived via the robot sensors. Spreadingafiotivis attractive because

it allows for efficient search potentially in parallel andarfashion that happens to be
analogous to human information processing [6].

The behaviors of team members are determined by the weifflit®that connect
layers of the spreading activation networks. Figure 4 shawsrtion of a spreading
activation network such as those used in the experiments.viights between pre-
conditions (the value of conditions observable in the aitretate of the environment)
and actions, as well as between actions and post-condfionise next state) can be
defined differently for each member of the team. These weigktermine how each
robot will make decisions: if the resulting probability ofartain action sequence being
successful in bringing a robot to a goal condition is higleeiohe robot, it may perform
this sequence where another robot in the same state would not

3.4 Probabilistic Task Planning

Goal-oriented planning techniques are utilized that medback propagation of goal
utilities, forward propagation of condition utilities, @maction selection as previously
developed in [2]. In particular, when the adaptive contegler is active (indicating
no direct rewards), planning is performed until one of thiéoas in the current state
accumulates enough utility and is selected. Action wttitare typically compared to a
threshold value, and when an action exceeds this threshi@delected.

Figure 4 shows a portion of the spreading activation netwbile first layer consists
of conditions observed in the environment, or the precammitpresent before acting.
These preconditions are linked to possible actions thetnolay perform, and the con-
nections indicate the likelihood of an action succeedingmithe state. These links,
denotedw;;, are determined by the following equations [2]:

_)>0 if (c; = T) increases R ***))
Y <0 if(c; = T) decreases Rf“c**)

where T indicates a true condition and F a false conditiore Mtk strengthuw
between an action; and one of its effect propositions is defined as follows:

P(c, = Tlas**c if a; set =T
w]k il { (Ck ‘Clj) I a’J sets (:k') (2)

—P(cx = F\a?“"ec) if a; sets ¢, =F)
During backpropagation, action utilities are then updatedetermine the best ac-
tion to take. First goal utilitie§/(c;,) are examined:

>0 if(cx,=T)eG
Uler) =4 <0 if(ck=F)eG 3)
=0 ifep, ¢G
Then the utility of conditionc, is combined with the probability of the condition

existing in the current state of the environment and actiffeet link strengths to deter-
mine the reward of performing an actio:

wj]gp(ck = F|St)U(Ck) If(w7k > O)

wjkP(ck = T|St)U(Ck) If(wjk < O) (4)

R(ajley) = {

These action rewards are summed over all conditions defthimgction utility for
actiona;:

Ul(a;|S;) = —=Cla;) + Y P(a5"°**|S;) R(aj]ck) (5)
k

3.5 Extracting Action-Condition Vectors

The action sequences that represent the best team aretedttirmen the GA and paired
with the condition vectors recorded during the simulatibthat team. For every action
in the sequence, the condition vector contains the correpg environmental condi-
tions present. The link strengths between actions andtefééthe spreading activation
networks are seeded with these action-condition pairs hluating the distribution of
conditions that occured after every action. A link strength is then determined by
the frequency of an effect proposition being true after aioaovas executed ovet
simulation steps:

i — exrec
Wi = l Z {+1 If (Ck trudajemc) (6)
n =1 if (¢, = falsda§™)

Frequency is incremented for every conditignthat is true after action; is ex-
ecuted. Ifc, is false after actiom; is executed, the frenquency count is decremented.
This method effectively correlates actions with effectshey tend to appear in the ob-
served environment. If an actier) results in equally frequent occurrences:pbeing
true and falsew;;, will accumulate to zero, indicating no relationship.

3.6 Switching Between Reactive Control and Planning

Reactive control takes over

l Adaptive Layer . / I

—
(SAN Planner) \ I

n

.

Goal conditions
+
Layer

Selectiol
slojenyoy

Reactive Layer J——

[

o |

-

Sensors ~—— \\ORLD

Fig. 2. Block diagram of the control system. The reac- Fig-3. A scenario demonstrating a
tive layer is activated whenever the sensors return val- SWitch between adaptive and reac-
ues that pass a threshold and indicate a goal condition. tive control.

To improve individual performance, a distributed contraldel was then developed
which incorporates a two-layered approach: a reactivercblalyer is used in situations

where a sensor stimuli indicates a direct reward (eitheitipesor negative), and an
adaptive control layer is used where no direct reward is whagée from the sensors
thus requiring planning (see Figure 2). The reactive coidyer equips the robot with
minimal behavioral competence to deal with its environmeemd is only active when
a target (light source) or collision condition are certairotcur if the robot does not
react. Figure 3 shows an example of a robot that is exploomgitds the north-east
while a wall is sensed on the right. Also shown is how the reaatontrol layer takes
over as soon as a direct reward is observable (here the kglsbss have discovered a
light source and the robot turns towards it). The amount afiping at any time during
execution varies depending on how many action-conditiepssheed to be evaluated to
achieve a high enough action utility for an action at theentrstep, which is discussed
further in section 4.

4 Implementation

A Khepera robot simulator is used in this work as describddvbeThe task given is
to localize as many light sources as possible in a prespedafigount of time, which
should be solved best by a team that works together by diyidmthe map between
robots to cover the largest possible area. Initially, aciequences are evolved to find
an optimal team as defined by the set of action sequences, dtwmnol is transferred
to spreading activation networks and performance is qigigly evaluated.

Three types of sensors are incorporated into the conditayes of the spreading
activation network: 8 light sensors, 8 distance sensois,aacompass. Each of these
types is divided so as to produce four Boolean conditionedah type. For the light and
distance sensors, threshold values are used to specifharhetvall (light) is detected
directly in front, to the left, to the right, or behind the aib The compass is used
to record roughly which of the eight cardinal directions tbeot is facing. Figure 4
indicates these conditions in the preconditions and efflegters of the network.

Wij

Current State Next State

Wall_Forward Wall_Forward
Wall_Left Wall_Left
Wall_Right Wall_Right
Wall_Behind Wall_Behind
Facing_North Facing_North

Facing_East Facing_East

Fig. 4. Portion of the spreading activation network.

The actions a robot may perform are limited to forward movetyirning left, or
turning right. Anaction period is defined so that the robot does not attempt to plan at
each time step (since very little would have changed in th@@mment). Between each
action period, the robot examines its current state reddigen the sensors, and if no
direct reward is in the state it will plan. Once a decision a&de, an action is performed
for action period time steps, and the sensors are examined for direct rewaddsther-
wise planning begins again. This allows the robot to chobs@ptimal decision based
on known probabilities at each action period.

4.1 Simulator

The experiment makes use of a freely available Khepera abowivritten in C [7].
The simulator evolved into a higher level and more genexam@m called Webots (not
a freeware) that allows for more sophisticated simulatiom& number of robots and
platforms.

An alternative Khepera simulator, KiKS [8], was also coesétl. KiKS is Matlab-
based and provides a smoother interface and multiple ralgmicst via a network
client/server implementation. However, for the purposingfiementing GAs, this sim-
ulator may be less suitable. The fastest simulation run imfgdesrobot that was achieved
with visualization turned off was 2000% the speed of the Kgnapeing simulated, with
a simulation of 200 steps taking a matter of seconds. Singpieal GA evolution can
involve thousands of simulation runs, this severely imp#uoe degree to which the net-
works could be feasibly evolved. Additionally, since muttbot support is currently
network-based, evolution of multiple robots seems eves $eted to this simulator.
The lightweight C simulator can be run orders of magnitudgefathan KiKS, and this
ultimately led to selecting it as the simulator for the expents we conducted.

Table 1. Parameters for genetic algorithm
s . Parameter Value

J I Gene size (action sequence length) 140

@ g H Subpopulation size 7

= Number of subpopulations 3

e e Max generations 30

Elitist genes per generation 1

Crossover rate 0.9

Mutation rate 0.05

Fig.5. The C-based Khepera simulator and
environment used. The team of three robots
begin in the lefthand section of the map.

4.2 TheEvolutionary Process

The GA was implemented with parameters as shown in Table &.SDbpopulation is
assigned permanently to each robot, which consists of Graséquence genes. Initially,
all gene alleles are assigned one of three action valuesWABR®, TURN_LEFT,
and TURNRIGHT are the possibilities with FORWARD being 80% as likely the
other two. At each stage of evolution the genes are evalpatatithe gene with the
highest fitness value is flagged as the 'best’ of the subptipnlarhese best genes are
copied directly to the next generation. This method ofstitiensures that individuals
with very high fitness are not lost through further evolutidhe rest of the genes are
then sequentially processed. For each gene, there is a S86eclé mutation, and if
mutation takes place then 5% of the gene is assigned a ranctam.df the gene is not
mutated, then it undergoes crossover with a random indiifitam the subpopulation.
Crossover takes place uniformly at one random point wheratiion sequence values
are swapped between the two individuals.

4.3 Evaluating Fitness

The map on which the experiment took place has dimension8.a@¥ 1000.0 and is
shown in Figure 5. The map was partioned into 100x100 egmatsiections. During
a simulated run, the path of each robot is tracked, and théauof sections traversed
is tallied. Along with this exploration fitness, the numbédight sources each robot
encounters is recorded. The fitness function assigned toaedion sequence gene is as
follows:

F(n) = (F;+100L;) (8)

1EN

where in (7),s; indicates the number of unique sections of the map merin&eplored
and/; refers to the number of different light sources discoveréith this action se-
quence. The fithess function assesses a combination ottimestied individual fithesses.
A majority of weight is placed on individual fitness, but meenbare also rewarded for
working well with others: the team members in the combimasetn in (8) the fit-
ness values from (7) are summed, and extra reward is asdigntt number of light
sources the entire team discovered. Figure 6 shows theatypécformance results of
the GA in a plot of best team fitnesses achieved over 30 gémesaFigure 7 shows the
average fithesses of each subpopulation along with the $itses the best members.

A typical resulting best team performance simulation issahin Figure 8. In this
simulation, each of the three robots explores a separater segtion of the map. Each
of the three robots begins in the same initial position eadlulsition run with all three
robots in the center of the board side by side. Every memberefy subpopulation
is run against every member of every other subpopulatiois ifcreases the search
space significantly, which is one of the reasons a smal subbgiipn size and only
three robots were used. At the end of each run, the genessigaad individual fithess
values and the team of genes is given a team fitness value.

Fig. 6. Best team fitness values over genera- Fig.7. Individual Fitness values of best mem-
tions. bers of each generation.

Table 2. Rewards for Environmental Goal
Conditions

Goal Condition Reward Value

Wall in front of robot -10
Wall left of robot 5
Wall right of robot 5
Wall behind robot 10

Light in front of robot 30
Light left of robot 20
Light right of robot 20
Light behind robot 20

Fig. 8. Paths of an evolved team. Each mem-
ber of the team explores a separate section of
the map.

4.4 Simulating Team Behaviors

The spreading activation networks are then initializecchEaetwork consists of three
layers. The preconditions layer is initialized with projpiosis as observed in the cur-
rent state of the environment. The effect (or postconditiplayer consists of reward
values for each condition being present in the goal stateshwthen determine action
utility as in (3). Table 2 shows the reward values assignezhtd condition. A negative
reward implies that the condition is undesirable, whicthis tase with a wall in front

of the robot. With negative rewards, the robot will plan agaiadverse environmental
conditions: for instance, if it is likely that a wall will bebservable in front of the robot
after performing an action, that action’s utility is lesednAlso, by assigning positive
rewards to having a wall on the left or right of the robot (athis case in Table 2) will

result in a wall following behavior.

Table 2 does not include rewards given for each specific diem. Assigning a
higher reward to facing north and east, for instance, woegiilt in robots that tend
to explore towards the northeast. However, since theserdsveae common to all ro-
bots, it is undesirable to hardcode behaviors in this wastekd, the link strengths
between these orientation conditions and each action hndre unique for each robot,
will provide these behaviors. These orientation rewardiegimust be balanced with
other utilities, such as wall conditions, otherwise theatalay prefer to face a wall as
long as it is oriented in the preferred direction. Also, thesientation rewards should
not be hardcoded to zero, or robots will be unable to devetdfabiors based on these
conditions.

In selecting actions there is often the possibility that otice seems desirable, or
all actions seem equally desirable. In these situationsabet may continue planning
indefinitely. To keep this from occuring, the forward proptign lookahead is limited to
a value assigned at design time. The value chosen for theimges was 4 lookahead
states. In the case that no conditions are present in theoenvent to make any of the
possible actions desirable (i.e. all action utilities azeog, the default action is to move
forward. This is rarely needed when the orientation coadgican themselves cause an
action to be desirable, which is further discussed in the sestion.

45 Applying Evolved Team Actionsto Spreading Activation

Next, the action sequences and corresponding conditicongesf the best team simu-
lation run from the GA evolution are used to initialize thekistrengths of the spreading
activation networks. A portion of these link strengths dreven in Figure 9. Since these
link strengths are limited directly to the experience of piagticular run corresponding
to the GA simulation, they are heavily biased to that paldiccun and are not guaran-
teed to necessarily represent the environment accurbtelyever, the biasing results in
each robot exhibiting a different behavior based on how fregeive the environment.
It is through this biasing that behaviors are developed.

Figure 10 shows a resulting simulation of 2000 time stepegaivalently twice the
length of action sequences used in the GA simulations. Bigégreous robot behaviors
are apparent from the figure. The path of robot #2, indicatddle, is the least produc-
tive, but exhibits wall-following around the perimeter bktmap. Robot 1, with a path

Next State

Wall_Forward

Go_Forward Wall_Left

Robot # Link Strength

>Wall_Forward 074
>Wall_Left 0.68
Il_Forward

Turn_Left

|_Forw:
eft->Wall_Left

>Wall_Forward 068
-orward->Wall_Left 0.10
Turn_Left->Wall_Forward ~ 0.48

1
1
1
2
2
2
Turn_Right 2
3
3
3
3 Turn_Left->Wall_Left 0.06

Fig. 9. A portion of the link strengths in resulting spreading activation networksk ktrengths
for turning left if there is a wall forward vary: Robot 1 would turn leftthRobot 2 would turn
right.

indicated in red, discovers the most light sources by ekhipa wall-adverse behavior.
The third robot, path indicated in purple, makes its way i® corner but becomes
trapped near that light source.

In Figure 10 it also indicated at what points the robots aiadeontrolled by the
spreading activation networkadaptive control) and when they are being controlled by
thereactive control layer. When a light source becomes observable by the setisers,
robot reflexively turns towards it. If the IR distance sesstetect a wall in front-left
or front-right of the robot, the robot will turn reflexiveln the direction opposite to the
wall to avoid a collision.

Figure 11 demonstrates a second simulation result. Thesttierobots were started
in a different area of the map than where they were trainexitiit the GA simulations.
The results are consistent with those as shown in 10: Robbtu2)(exhibits wall-
following, robot 1 (red) exhibits wall-adverseness, ankdato3 (purple) stays around
light sources. The consistency of behaviors confirm thatsgireading activation net-
works are controlling the actions of the robots for the migjaf the time.

5 Discussion

The results from the simulation indicate that behaviorslmasuccessfully defined by
link strengths within spreading activation networks, amd ts a successful framework
for developing such behaviors. These behaviors are mongstdban the action se-
quences evolved by the GA, since the robots can be init@linedifferent areas (or
different maps) and their performance will remain aboutdhee.

It should be noted that the robots did not perform as well asisewhen controlled
by the spreading activation networks as compared to theseddBA sequences, but
some task decomposition was still present. By exhibitinffedint behavioral roles,
like wall-following versus wall-adverseness, a team of itetobots is able to explore

Fig. 11. Paths achieved by starting the robots
Fig.10. Paths achieved in the same environ- in another part of the environment using the
ment by a team controlled by spreading acti- same network link strengths.
vation networks and reactive control.

more features of any environment. This environmental iedepnce is probably the
most useful result of this experiment.

Reactive control was introduced into the framework desigmtfie purposes of
speeding up GA evolution. Without reactive control, thei@ttsequences produced
would often result in robots running against walls for tiregiments and hindered over-
all progress. Reactive control, however, adds a bit of audit uncertainty into the
design of action sequences. Robots may be reacting to a mallamother robot in the
same way. This is ultimately a sensory issue and remains aoldheessed.

The GA succeeded in this experiment in decomposing the tasiagimizing ex-
ploration between members of the team. Since the problemptohizing cooperative
team search behavior appears to be NP-hard, it was welldsigitea GA search. By
tweaking the actual fitness functions (7) and (8) this deamsitipn could be manipu-
lated. After most evolutions achieved during the simulaidhere was one robot which
evolved better than the others. This robot may have in a wagened the evolution of
other robots when team fithess was evaluated. Since thisnastiquence achieved a
high fitness value, it was not as imperative that the otheomcequences present in
this particular simulation be as fit in order to survive. Byuasting the team and indi-
vidual fitness functions appropriately, convergence of besmm fitness values should
be possible.

The idea behind mapping the action-condition vectors to $imengths of spread-
ing activation networks can be compared to other behawdased techniques. It is be-
lieved that defining these link strengths based on the pegnce of only one simula-
tion may not have provided adequate information for creggdinobust decision-making
framework. One way of remedying this problem is to incredmeléngth of the ac-
tion sequences that make up the GA genes but with the costeategrcomputation
time in performing evolution. Another way would be to evolbe genes until each
subpopulation converges to almost the same action secgiefigen, using all of the
genes from each subpopulation in creating link strengththefspreading activation

networks would provide more of an aggregated representafithe appropriate action
sequences.

The framework developed to this point only addresses the gogtion of what
would be required to deploy a team of goal-directed robdte [atter portion requires
supplementing this framework with a full, goal-directedkglanner. This addition to
the framework would need to incorporate a memory system antgd in each robot
to allow task and environment tracking. The behaviors thatrbbots have developed
would still dominate decision making, but decisions on vehter explore next would
also be more influenced by where the robot has already been.

6 Conclusions

Spreading activation is an effective means of defining plambehavior for a team of
robots. Once the spreading activation networks have bégadized, the robots will ex-
hibit these behaviors independent of their place in therenment or the environment
itself. However, the method of using GA evolution to find listkengths for the spread-
ing activation network of each robot requires sooeatralized method of evaluating
team fitness.

References

[EnY

. Arkin, R., Balch, T.: Cooperative multiagent robotic systems (1998

2. Bagchi, S., Biswas, G., Kawamura, K.: Task planning under nizmiody using a spreading
activation network. IEEE Transactions on Systems, Man, and CytiesnBart A30 (2000)
639-650

3. Verschure, P.F.M.J., Althaus, P.: A real-world rational agemifying old and new ai. Cogni-
tive Science27 (2003) 561-590

4. Panait, L., Luke, S.: Cooperative multi-agent learning: The statheofirt. Technical Re-
port GMU-CS-TR-2003-1, Department of Computer Science, Gellason University, 4400
University Drive MS 4A5, Fairfax, VA 22030-4444 USA (2003)

5. Stanley, K.O., Miikkulainen, R.: Evolving neural network througly@enting topologies.
Evolutionary Computatiod0 (2002) 99-127

6. Kortenkamp, D., Chown, E.: A directional spreading activation netvior mobile robot
navigation. In: Proceedings of the second international conferenEgoon animals to animats
2 : simulation of adaptive behavior, Cambridge, MA, USA, MIT Pre€9@) 218-224

7. Michel, O.: Khepera Simulator version 2.0. User Manual. (199&)imally downloaded from
http://www.i3s.unice.fr/.

8. Nilsson, T.: Kiks is a khepera simulator. Master’s thesis, Ume Usiityef2001)

