
AN AUTOMATIC GENERATION METHOD OF DIFFERENTIAL
XSLT STYLESHEET FROM TWO XML DOCUMENTS

Takeshi Kato, Hidetoshi Ueno, Norihiro Ishikawa
Network Management Development Department, NTT DoCoMo, Inc., 3-5 Hikarino-oka, Yokosuka, Kanagawa, JAPAN

Keywords: XML, DOM, XSLT, Differential Data

Abstract: We propose a differential XSLT stylesheet generation method for arbitrary pairs of XML contents. It is
possible to obtain the revised XML document by supplying the XSLT stylesheet with the differential data to
the original XML document. Comparing with sending whole revised XML document, the original XML
document can be updated by sending less information, the differential data. This paper introduces a
difference detection algorithm based on the DOM tree and a difference representation method that permits
the expression of difference information. We also discuss a new XSLT function for the proposed method.
We also introduce prototype software implemented based on proposed method and evaluation result that
shows the effectiveness of our method. An experiment shows that the proposed method is suitable for
updating XML contents, especially for web service in the costly mobile network.

1 INTRODUCTION

XML (eXtensible Markup Language)[Bray, 2000] is
an extensible meta-language that is being widely
applied in description languages such as XHTML
(eXtensible HyperText Markup Language), SVG
(Scalable Vector Graphic) and CC/PP (Composite
Capability / Preference Profiles) as well as
communication protocols such as SOAP (Simple
Object Access Protocol). Unfortunately, XML
content is generally large compared to CSV (Comma
Separated Value) and TLV (Tag-Length-Value)
content because XML uses element tags, attributes,
and XML declarations. In mobile web services,
XHTML[Baker, 2000] mobile profile has become
the standard markup language for mobile phones.
Retransmitting the whole content wastes bandwidth
and time, especially in the wireless network. It is
becoming more and more important to promote
efficiency in the update process and version control
of XML data. An effective idea is updating content
locally by using difference data because the
difference between the old content and the updated
content tends to be small. Mogul et al (1997)
confirmed the benefit of transmitting just the
difference data, for example HTTP Delta-
encoding[Mogul, 2002]. If the differential data of
two XML documents is generated and transmitted
instead of the whole document, the amount of
transmitted data can be greatly reduced. When a

client receives the differential data, it regenerates the
new content, by applying the differential content to
the original content.

To realize the above scenario, we propose a
technique for the automatic generation method of a
differential XSLT stylesheet from two arbitrary
XML documents and show the availability of
description of difference data using a differential
XSLT stylesheet. This technique can also be
provided to web services such as push information
delivery service, weblog service and so on, in which
content need to be frequently and partially updated.
The proposed technique can promote efficiency in
the update process and version control of them.

In this paper, section 2 describes overview of the
proposed method. In section 3, the prototype
software and the results of experiments are
mentioned. Section 4 proposes some extensions to
XSLT for the proposed method and related works
are addressed in Section 5. We conclude this paper
in Section 6.

2 PROCESS OF DIFFERENTIAL
XSLT STYLESHEET
GENERATION

The proposed method uses XSLT (eXtensible
Stylesheet Language Transformations) [Clark, 2000]

5
Kato T., Ueno H. and Ishikawa N. (2005).
AN AUTOMATIC GENERATION METHOD OF DIFFERENTIAL XSLT STYLESHEET FROM TWO XML DOCUMENTS.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 5-12
DOI: 10.5220/0001229300050012
Copyright c© SciTePress

for updating XML document. XSLT is a language
that provides the function of data structure
transformation for XML documents. We adopted the
Document Object Model (DOM) [Le Hors, 2000] to
express the XML data structure. An original and
updated XML documents are parsed and converted
into two DOM trees. We generate differential XSLT
stylesheets in three steps because it is difficult to
perfectly extract differential data in one operation.
The proposed method is shown in Fig. 1.

Step-1 Difference Detection Process
The differences between the two DOM trees are

detected. In this process, common parts and
differential parts are identified.
Step-2 Difference Extraction Process

We define added nodes, deleted nodes and
change nodes as differential data. In this process,
added nodes, deleted nodes and change nodes are
classified as described later.
Step-3 Difference Representation Process

Differential data is mapped to XSLT templates
and a differential XSLT stylesheet is generated from
them.

The following subsections describe these
processes in detail.

2.1 Difference Detection Process

In the first step, accordant, appearing and
disappearing nodes are detected. We propose a new
detection algorithm that changes the DOM tree
structures, maximizes the accordant tree and regards
the remaining nodes as differential nodes. The
assumptions of the algorithm are as follows.
i) A virtual node is assumed at the head of an
actual root node and regarded as a temporary root
node. It is treated as a common node. (Fig. 2)
ii) The goal is to maximize the number of
common nodes.
iii) The term “common” means that the nodes
have the same element names, same attribute names,
and same attribute values.

Note that it is not necessary to compare an
element node, an attribute node and a text node if
they are treated as DOM nodes. Nodes are compared
type-by-type for efficiency.

The proposed difference detection method is

described below with reference to Fig. 4 using the
XML document in Fig. 3.
(a) Finding maximum number of common nodes
(Fig. 4(a))

The method compares the components of the
DOM trees to find the maximum number of
common nodes.
(b) Creating combination of nodes and comparing
DOM tree structures (Fig. 4(b))

Combinations are compared in decreasing order
of the number of nodes.
(c) Detecting accordant nodes, appearing nodes
and disappearing nodes (Fig. 4(c))

The node-set in the DOM tree that has the
maximum number of accordant nodes, are regarded
as determinate accordant node-set. Other nodes in
the DOM trees than determinate accordant node-set
are taken to be the determinate differential nodes,
which are then classified into two types, appearing
nodes and disappearing node. Appearing nodes are
the determinate differential nodes in the original
DOM tree. Disappearing nodes are the determinate
differential nodes in the updated DOM tree. The
information of each node is arranged into three
tables. In the accordant node table, “Reference
position” column indicates the position of each
accordant node. “Original position” column means
the position of the accordant node in the original
DOM tree and “Updated position” column similarly
indicates the position in the updated DOM tree. In
the appearing node table, “appearance position”
column indicates the position in the updated DOM
tree. “Absolute position” column means the relative
position of correspondent node in the accordant
DOM tree. In the disappearing node table,
“disappearance position” column indicates the

Figure 1: Generation Process of Differential
XSLT Stylesheet.

Figure 2: Structure of XML Document.

Figure 3: Example of original and updated XML
Document.

Original
XML

Document

Original
XML

Document

Updated
XML

Document

Updated
XML

Document

Step-1
Difference
Detection
Process

Step-1
Difference
Detection
Process

Step-2
Difference
Extraction

Process

Step-2
Difference
Extraction

Process

Step-3
Difference

Representation
Process

Step-3
Difference

Representation
Process

Original DOM Tree

Updated DOM Tree

Differential
Information
Differential
Information

Differential
XSLT

Stylesheet

Differential
XSLT

Stylesheet

Parsing XML

//

<RouteElement><RouteElement>

ABCABC

<RouteElement>
ABC

</RouteElement>

<RouteElement>
ABC

</RouteElement>

...Root Node

...Element Node

...Text NodeXML Document

<A>
<B E=“X”>
<F/>

<C/>
<D/>

<A>
<B E=“X”>
<F/>

<C/>
<D/>

<A>
<B E=“X”>
<2/>

<1>
<F/>
<C/>

</1>

<A>
<B E=“X”>
<2/>

<1>
<F/>
<C/>

</1>

Original XML Document Updated XML Document

WEBIST 2005 - INTERNET COMPUTING

6

position in the original DOM tree. “Absolute
position” column similarly means the relative
position of correspondent node in accordant DOM
tree. In each table, other nodes than accordant nodes
are represented using node[n] in which n is a
position in the same siblings in the updated DOM
tree. A leftmost node is expressed as node[1].
Attribute nodes are expressed as @ + attribute
name.

The purpose of this process is to detect the
maximum number of accordant nodes and the
remaining differential nodes.

2.2 Difference Extraction Process

In this step, detailed differential data is extracted
from the tables created in the previous step. The
proposed method classifies appearing and
disappearing nodes into three kinds of nodes.

i) Change node
Comparing an appearing node table and a

disappearing node table, two nodes that have the
same absolute position and the same type are
regarded as change nodes. In Fig. 4, node “2” in the
appearing node table and node “F” in the
disappearing node table are change nodes.
ii) Added node

Other nodes than change nodes in an appearing
node table are regarded as added nodes. In Fig. 4,
node “1” and node “F” in the appearing node table
are added nodes.
iii) Deleted node

Other nodes than change nodes in a disappearing
node table are regarded as deleted nodes. In Fig. 4,
node “D” in the disappearing node table is a deleted
node.

Fig. 5 shows a table of differential nodes created

from the XML documents in Fig. 3.

2.3 Difference Representation Process

In this step, differential data generated in the
previous step are mapped to XSLT templates from
which a differential XSLT stylesheet is generated.
The proposed difference representation method
consists of the following sequences.
(a) Determining a transformation position as a
pattern of XSLT template rule

A XML data structure transformation is
described specifying the following two items.
- Which position of XML data is transformed?
(Determining a transformation position as a pattern
of XSLT template rule)
- How is the corresponding part of XML data
transformed? (Transformational description)

Figure 5: Example of Differential nodes.

Figure 6: XSLT Template rule.

Figure 4: Difference Detection Process.

Original XML Updated XML

A B C D E F A B C 1E F 2

A B C E F A B C E F

(a) Finding maximum number of common nodes

ABCE ABCE

(b) Creating combination of nodes and comparing DOM tree structures

A

CB D

E F

A

B 1

E 2 F C

A

CB D

E F

A

B 1

E 2 F C

/A/B/A/B/A/B-BElement

/A/node[2]/C/A/C/A/C-CElement

/A/B/@E/A/B/@E/A/B/@E“X”EAttribute

/A

Updated
position

/A

Original
position

/A

Reference
position

-

Value

A

NodeName

Element

NodeType

/A/B/A/B/A/B-BElement

/A/node[2]/C/A/C/A/C-CElement

/A/B/@E/A/B/@E/A/B/@E“X”EAttribute

/A

Updated
position

/A

Original
position

/A

Reference
position

-

Value

A

NodeName

Element

NodeType

/A/node[1]

/A/B/node[1]

/A/node[2]

Absolute position

/A/node[2]/node[1]-FElement

/A/B/node[1]

/A/node[2]

Appearance position

-

-

Value

2

1

NodeName

Element

Element

NodeType

/A/node[1]

/A/B/node[1]

/A/node[2]

Absolute position

/A/node[2]/node[1]-FElement

/A/B/node[1]

/A/node[2]

Appearance position

-

-

Value

2

1

NodeName

Element

Element

NodeType

/A/B/node[1]

/A/node[3]

Absolute Position

/A/B/node[1]

/A/node[3]

Disappearance position

-

-

Value

F

D

NodeName

Element

Element

NodeType

/A/B/node[1]

/A/node[3]

Absolute Position

/A/B/node[1]

/A/node[3]

Disappearance position

-

-

Value

F

D

NodeName

Element

Element

NodeType

Accordant node table

Appearing node table

Disappearing node table

(c) Detecting common nodes, added nodes and deleted nodes

ABCEF ABCEF

ABCF ABCF

ABEF ABEF

Accordance

-1ElementAdditionElement/A/*[2]

-2ElementChangeElement/A/B/*[1]

DeletionElement/A/*[3]

AdditionElement/A/*[2]/*[1]

-

-

Node
Value

-

F

Node
Name

Node
Type

-

Element

Additional Data
Classification
of difference

Node
Type

Reference
Position

-1ElementAdditionElement/A/*[2]

-2ElementChangeElement/A/B/*[1]

DeletionElement/A/*[3]

AdditionElement/A/*[2]/*[1]

-

-

Node
Value

-

F

Node
Name

Node
Type

-

Element

Additional Data
Classification
of difference

Node
Type

Reference
Position

<xsl:template match=“ ”>

</xsl:template>

<xsl:template match=“ ”>

</xsl:template>

PatternPattern

Transformational description Transformational description

Original XML Updated XML

A

A

B
B

X

/A/B/A/B

<xsl:copy>
<X/>

</xsl:copy>

<xsl:copy>
<X/>

</xsl:copy>

Node X is a
child of Node B

Added Node

Accordant Node

Relative positionRelative position

Absolute positionAbsolute position

AN AUTOMATIC GENERATION METHOD OF DIFFERENTIAL XSLT STYLESHEET FROM TWO XML
DOCUMENTS

7

These items constitute a template rule and are
represented as xsl:temlate element in the XSLT
stylesheet. (Fig. 6) In a template rule, a pattern is an
XPath[Clark, 1999] expression of the position of a
node in an original DOM tree. We must specify
transformation position as a pattern in a template
rule. The position of an added node in an updated
DOM tree is separated into a reference position and
relative position and the reference position is
specified as a pattern in a template rule.

In the proposed method, a pattern of a template

rule is determined by tracing an updated DOM tree
from top to bottom (from a parent to a child), and
from left to right (from an elder brother to a younger
brother) As a result, templates are generated in a tree
structure that branch toward the descendant
direction. Additionally, the positions of change and
accordance nodes can be used as a pattern of a
template rule because their own position can be
specified in an original DOM tree. The method used
to determine a pattern of a template rule is described
with reference to Fig. 8. For change nodes and
accordance nodes, their own positions are patterns.
In case of added nodes, patterns are determined
according to following sequences.
i) Searching a pattern toward descendant nodes
(Fig.7 (a))

A change node or an accordance node is
searched for starting from the corresponding node
and moving toward descendant nodes. The position

of the nearest descendant appropriate node is
regarded as a pattern. If there is no appropriate node,
there are multiple appropriate nodes, or there is a
branch in the tree, the next procedure is applied.
ii) Searching a pattern toward elder brother nodes
(Fig. 7(b)

A change node or an accordance node is
searched starting from the corresponding node and
moving toward elder brother nodes. The position of
the nearest elder brother appropriate node is
regarded as a pattern. If there is no appropriate node,
the next procedure is applied.
iii) Searching a pattern toward younger brother
nodes (Fig. 7(c))

A change node or an accordance node is
searched starting from the corresponding node
toward younger brother nodes. The position of the
nearest younger brother appropriate node is regarded
as a pattern. If there is no appropriate node, the next
procedure is applied.
iv) Searching a pattern toward ancestor nodes
(Fig. 7(d))

A change node or an accordance node is
searched from the corresponding node toward
ancestor nodes. The position of the nearest ancestor
appropriate node is regarded as a pattern. If there is
no appropriate node, the pattern of a parent node is
taken as that of the corresponding node.

The reason why the search pattern direction
begins with descendant nodes and leaves ancestor
nodes to the last is that if a pattern search
commences with ancestor nodes, a pattern is
underspecified since XML has a tree structure.

The search process for deleted nodes starts with
ancestor nodes. As shown in Fig. 8, if all descendant
nodes are deleted nodes, the position of the top node
is regarded as the pattern of these nodes and all
deleted nodes can be deleted using the same
template. Therefore, the position of the farthest
ancestor node which has only deleted nodes is
regarded as the pattern. If there is no appropriate
node, the position of the corresponding node is
regarded as the pattern.

The search for attribute nodes also starts toward
ancestor nodes, because attribute nodes basically
have only parent nodes.

Figure 7: Searching a transformation position as a
pattern of XSLT template rule.

Figure 8: Searching pattern of deletion node.

1

2
1

potential pattern node
(Accordant node / change node)

Added node

Node A is a
pattern of both
Node 1 and 2A

B

A

B C

Node A is a pattern
of Node 1

1

32 4 21 3

Node A is a pattern of both
Node 2 and 3.
Node B is a pattern of Node 4

A
B

Node B is a patter of both
Node 1and 2
Node C is a patter of Node 3

A
B

C

(a) Searching a pattern toward descendant nodes

(b) Searching a pattern toward elder brother nodes

1

32
A

21
B

A
Node A is a
pattern of both
Node 2 and 3

Node A is a
pattern of both
Node 1 and 2

(c) Searching a pattern toward younger brother nodes

1

A

Node A is a
patter of Node 1

1

2

A

B

Node A is a patter
of both Node 1 and
2

(d) Searching a pattern toward ancestor nodes

1

2

3 4

5

6

A

B

C

Node 3 has only
deleted node as its own
descendant node

Node 3Node 6

Node 3Node 5

Node 4Node 4

Node 3Node 3

Node 2Node 2

Node 1

Pattern

Node 1

Node Name

Node 3Node 6

Node 3Node 5

Node 4Node 4

Node 3Node 3

Node 2Node 2

Node 1

Pattern

Node 1

Node Name

potential pattern node
(Accordant node / change node)

Deleted node

<xsl:template match=“/A/1/2/3”>
<xsl:template>
<xsl:template match=“/A/1/2/3”>
<xsl:template>

Template rule for deleting Node 3,5 and 6

WEBIST 2005 - INTERNET COMPUTING

8

(b) Generating mapping information
Differential data is organized according to the

patterns identified in the previous step. The
differential nodes are classified according to pattern
because differential nodes that have the same pattern
can be described using the same XSLT template.
Fig. 9 shows the differential data for the XML
documents in Fig. 3.

(c) Mapping to XSLT template
Differential data is mapped to an XSLT template

according to node type and classification of
difference.
i) Mapping to XSLT template for accordant,
changed and deleted nodes

Nodes that have the same pattern are collectively
described by the same XSLT template. As shown in
Appendix A at the end of this paper, each node is
mapped to one XSLT template.

ii) Mapping to XSLT template for added nodes
Nodes that have the same pattern are collectively

described by the same XSLT template. The added
node is described as Appendix B. If a node regarded
as a pattern has a descendant template, xsl:apply-
template element is added in correspond template. If
a node which share the same pattern are described
by the same template. If there are multiple
descendant templates of the correspond added node,
multiple xsl:apply-template elements are used as
shown in Appendix C.

Fig. 10 shows XSLT templates for the XML
documents in Fig. 3.
(d) Generating a differential XSLT stylesheet

A Differential XSLT stylesheet is generated
from XSLT templates as shown in Fig. 11. The
header part includes a XML declaration and various
XSLT parameters. The footer part includes a
template to copy those accordance nodes that are not
regarded as transformation position (pattern node).

3 EXPERIMENTS

We have implemented prototype software in Java
(J2SE 1.3.1).We used Apache Xalan-Java 2.4.0
(XSLT Engine) to verify the generated XSLT
stylesheets and IBM XML Parser for Java to parse
XML documents. Our prototype software has
functions to generate differential XSLT stylesheets
from arbitrary pairs of XML documents and verify
them. Additionally, it provides a graphical viewer of
the differential data of two XML documents and
shows some values such as compression ratio,
difference ratio and so on. We have examined the
validity of our proposed method using this software.

3.1 Stock Price Information

We have investigated the relationship between
compression ratio and difference ratio using the
following stock price information. In Fig. 12, stock
price is updated every minute; old price data are

Figure 10: Example of XSLT Templates.

Figure 11: Differential XSLT Stylesheet.

Figure 9: Differential Information according to
Patterns.

YesChangeElement/A/B/F

YesAccordanceElement/A/B

YesAccordanceElement/A/C

No

Yes

No

Transfor
mation

Accordance

Deletion

Accordance

Difference

Attribute

Element

Element

Node
Type

/A/D

/A/E

/A

Absolute
position

YesChangeElement/A/B/F

YesAccordanceElement/A/B

YesAccordanceElement/A/C

No

Yes

No

Transfor
mation

Accordance

Deletion

Accordance

Difference

Attribute

Element

Element

Node
Type

/A/D

/A/E

/A

Absolute
position

/A/D

/A/C

/A/B/F

/A/B

Pattern

Deletion/A/D

Addition/A/1/F

Change/A/B/2

Addition/A/1

Difference
Node
Name

/A/D

/A/C

/A/B/F

/A/B

Pattern

Deletion/A/D

Addition/A/1/F

Change/A/B/2

Addition/A/1

Difference
Node
Name

Pattern node table

---DeletionElementitself/A/D

-2ElementChangeElementitself/A/B/F

Elder
brother

Parent

Relative
position

-

-

Node
Value

F

1

Node
Name

Node
Type

Element

Element

Addition Data

Addition

Addition

Difference

Element

Element

Node
Type

/A/C

/A/B

Absolute
position

---DeletionElementitself/A/D

-2ElementChangeElementitself/A/B/F

Elder
brother

Parent

Relative
position

-

-

Node
Value

F

1

Node
Name

Node
Type

Element

Element

Addition Data

Addition

Addition

Difference

Element

Element

Node
Type

/A/C

/A/B

Absolute
position

Pattern of template rule

Transformational description of template rule

Before XML After XML

A

CB D

E F

A

B 1

E 2 F C

<xsl:template match="/node()[1]/node()[1]">
<xsl:copy>

<xsl:apply-templates />
</xsl:copy>
<Node1>

<xsl:apply-templates select="/node()[1]/node()[2]" />
</Node1>

</xsl:template>

Copy of Node B and addition of Node 1

<xsl:template match="/node()[1]/node()[2]">
<F/>
<xsl:copy>
</xsl:copy>

</xsl:template>

Copy of Node C and addition of Node F

<xsl:template match="/node()[1]">
<xsl:copy>

<xsl:apply-templates select="/node()[1]/node()[1]" />
</xsl:copy>

</xsl:template>

Copy of Node A

<xsl:template match="/node()[1]/node()[3]">
</xsl:template>

Deletion of Node D

<xsl:template match="/node()[1]/node()[1]/node()[2]">
<Node2/>

</xsl:template>

Change of Node F to Node 2

<?xml version=“1.0” encoding=“Shift_JIS”?>
<xsl:stylesheet version=“1.0” xmlns:xsl=http://www.w3.org/1999/XSL/Transform>”

<xsl:output method=“xml” omit-xml-declaration=“no” version=“1.0”
encoding=“Shift_JIS” indent=“no” doctype-system=“i-xhtml10.dtd”
doctype-public=“-//NTT DoCoMo//XHTML DTD i-XHTML 1.0//EN”/>

<?xml version=“1.0” encoding=“Shift_JIS”?>
<xsl:stylesheet version=“1.0” xmlns:xsl=http://www.w3.org/1999/XSL/Transform>”

<xsl:output method=“xml” omit-xml-declaration=“no” version=“1.0”
encoding=“Shift_JIS” indent=“no” doctype-system=“i-xhtml10.dtd”
doctype-public=“-//NTT DoCoMo//XHTML DTD i-XHTML 1.0//EN”/>

<xsl:template match=“@*|node()”>
<xsl:copy>
<xsl:apply-templates select=“@*|node()”/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

<xsl:template match=“@*|node()”>
<xsl:copy>
<xsl:apply-templates select=“@*|node()”/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

XSLT template

XSLT template

Header

Footer

Difference Data

AN AUTOMATIC GENERATION METHOD OF DIFFERENTIAL XSLT STYLESHEET FROM TWO XML
DOCUMENTS

9

deleted and new price data are added. We changed
XML data size and differential ratio and determined
the resulting compression ratio.

The compression ratio is defined as the ratio of
generated XSLT stylesheet to the before XML data.
The difference ratio is defined rate of existence of
unique nodes. (See formula (1) and (2).)

Fig. 13 shows the experimental result using

stock price information. In our experiments, the size
of a XML document was changed from 1Kbyte to
100Kbyte, the difference ratio was changed from
about 4% to 50%. As shown in Fig. 13, compression
ratio becomes high when the size of a XML
document increases. This means that the overhead of
the header and footer of the XSLT stylesheet can be
decreased for a large XML document. Even a small
XML document (i.e. 1Kbyte document) can be
effectively compressed if the difference ratio is
below 25%. Therefore, the proposed method is
suitable even for a small XML document if it has
only minor updates.

3.2 News Flash Content

Then we have investigated the relationship between
actual compression ratio and difference ratio using
the following news flash content. In Fig. 14, news
flash is updated; an old item is deleted and a new
item is added. We changed difference ratio and
compared the compression ratio of a differential
XSLT stylesheet (D-XSLT), a differential XSLT
stylesheet compressed by gzip (D-XSLT+gzip), a
Diff [GNU, 2002] file compressed by gzip
(Diff+gzip) and an entirely updated content
compressed using gzip (HTML+gzip).

Fig 15 shows the experimental result. The

difference ratio is changed from about 10% to 45%.
As shown in Fig. 15, a differential XSLT stylesheet
complessed by gzip (D-XSLT+gzip) reduces about
63% of the size of entirely updated content
compressed by gzip. Compared to Diff file
compressed by gzip (Diff+gzip), the size of D-
XSLT+gzip is about 38% larger. This result shows,
although the proposed method is not optimised
compared with Diff+gzip method, it realizes
comparatively efficient compression.

Figure 12: XML data of intra-day chart.

(%) 100
data XML updated of Size

Stylesheet XSLT Generated of Size
ration Compressio ×= (1)

(%) 100
document XML updatedin nodes all ofNumber

nodes ediscordanc ofNumber
ratio Difference ×= (2)

Figure 13: Relationship between compression ratio
and difference ratio using stock price information.

Figure 14: News Flash Content.

Figure 15: Relationship between compression ratio
and difference ratio using news flash content.

<?xml version="1.0"
encoding="UTF-16" ?>
<StockData>

<Company id="1111">
<Name>AAA</Name>
<Price>
<T0900>10000</T0900>
<T0901>10100</T0901>

<T1359>10016</T1359>
</Price>

</Company>
</StockData>

<?xml version="1.0"
encoding="UTF-16" ?>
<StockData>

<Company id="1111">
<Name>AAA</Name>
<Price>
<T0901>10100</T0901>

<T1359>10016</T1359>
<T1400>10016</T1400>

</Price>
</Company>

</StockData>

addition

Original XML Data Updated XML Data

Deletion

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

Difference Ratio (%)

C
om

pr
es

si
on

 R
at

io
 (

%
)

1K

2K

5K

10K

50K

100K

addition

Original News Content Updated News Content

Deletion

0

20

40

60

80

100

120

0 10 20 30 40 50

Difference Ratio (%)

C
om

pr
es

si
on

 R
at

io
 (

%
)

D-XSLT

D-XSLT+gzip

Diff+gzip

HTML+gzip

WEBIST 2005 - INTERNET COMPUTING

10

4 EXTENSION TO XSLT
FUNCTIONS

XSLT is not optimized for generating differential
XSLT stylesheets. We have considered new XSLT
function for the proposed method as described
below.
i) Package copy of element and attribute nodes

In Fig. 16, node “e1” is entirely copied under the
node “e3”. However, XSLT can not copy any
particular node. Thus the XSLT template repeats the
same data of node “e1”. The XSLT template must
have the same data contained in the original XML
document. This decreases the efficiency of
compression.

ii) Range copy
In Fig. 17, a sub-tree consists of the node “e1”

and the node “e2”, is copied under the node “e4”. In
XSLT, a sub-tree can be regarded as a node-set
using xsl:copy-of element. However a node-set must
include all nodes under the root of a sub-tree. Thus a
node-set cannot be used to designate some parts of a
sub-tree. Some parts of a sub-tree can not be copied
using xsl:copy-of element.

We propose a new XSLT function for xsl:copy-

of element that designates nodes from the root of a
sub-tree to the n-th generation descendants. If the
proposed function is applied to above two examples,
the resulting XSLT templates are generated as
shown in Fig 18.

Introducing such a function can optimize the
generation of a differential XSLT stylesheet.

5 RELATED WORK

Compared to existing methods of differential data
generation [La Fontaine, 2001][Curbera, 1999], the
proposed method has the advantage of easily
adapting to expanded data as XML tree, and using
existing XSLT engines. But there is a problem that
mobile terminals have to deal with heavy process to
expand XML navigation tree into memory. To
lighten this process, XML processors for mobile
terminals such as TinyTree[OSTG, 2004b] and
DTM (Document Table Model)[Apache Project,
2004] have been developed. By expanding XML
document as tree or array structure in the memory
using these XML processors, it is more efficient to
deal with difference data. In addition, the proposed
method needs only XSLT engine, different from
DUL (Delta Update Language) [OSTG 2004a] in
which special language processing module is
needed.

La Fontaine (2001) and Curbera (1999)
described methods to generate difference data from
arbitrary pairs of XML documents. These methods
compare nodes of the original and the revised XML
DOM trees from root to leaf. If a unique node is
detected, all descendant nodes from that node are
regarded as difference. They can not detect the most
appropriate difference and no mention was made of
this issue. On the other hand, the proposed method
resolves this issue and so can extract the differences
most effectively. It similarly compares the nodes of
the original and revised XML DOM trees from root
to leaf. When a unique node is detected, the
corresponding node is regarded as difference if its
descendant nodes are common. Therefore it is able
to accurately detect the difference between original
and revised XML documents.

6 CONCLUSION

We proposed an automatic method of generating
differential XSLT stylesheets from arbitrary pairs of

Figure 16: Example 1 of XSLT Stylesheet.

Figure 17: Example 2 of XSLT Stylesheet.

Figure 18: Example of XSLT template using
proposed function.

<root>
<e1 attr1=“a” attr2=“b”>

<e2/>
</e1>
<e3/>

</root>

<root>
<e1 attr1=“a” attr2=“b”>

<e2/>
</e1>
<e3/>

</root>

Original XML Data

Updated XML Data

<xsl:temlate match=“e3”>
<xsl:copy>

<e1 attr1=“a” attr2=“b”/>
</xsl:copy>

</xsl:template>

<xsl:temlate match=“e3”>
<xsl:copy>

<e1 attr1=“a” attr2=“b”/>
</xsl:copy>

</xsl:template>

XSLT template

<root>
<e1 attr1=“a” attr2=“b”>
<e2/>

</e1>
<e3>

<e1 attr1=“a” attr2=“b”>
</e3>

</root>

<root>
<e1 attr1=“a” attr2=“b”>
<e2/>

</e1>
<e3>

<e1 attr1=“a” attr2=“b”>
</e3>

</root>

<root>
<e1><e2><e3/></e2></e1>
<e4/>

</root>

<root>
<e1><e2><e3/></e2></e1>
<e4/>

</root>

Original XML Data

Updated XML Data<xsl:temlate match=“e4”>
<xsl:copy>

<e1>
<e2/>

</e1>
</xsl:copy>

</xsl:template>

<xsl:temlate match=“e4”>
<xsl:copy>

<e1>
<e2/>

</e1>
</xsl:copy>

</xsl:template>

XSLT template

<root>
<e1><e2><e3/></e2></e1>
<e4>
<e1>

<e2/>
</e1>

</e4>
</root>

<root>
<e1><e2><e3/></e2></e1>
<e4>
<e1>
<e2/>

</e1>
</e4>

</root>

<xsl:temlate match=“e3”>
<xsl:copy>

<xsl:copy-of select=“/e1[generation()=0]”>
</xsl:copy>

</xsl:template>

<xsl:temlate match=“e3”>
<xsl:copy>

<xsl:copy-of select=“/e1[generation()=0]”>
</xsl:copy>

</xsl:template>

<xsl:temlate match=“e4”>
<xsl:copy>

<xsl:copy-of select=“/e1/node()[generation()=1]”>
</xsl:copy>

</xsl:template>

<xsl:temlate match=“e4”>
<xsl:copy>

<xsl:copy-of select=“/e1/node()[generation()=1]”>
</xsl:copy>

</xsl:template>

Example 1 of XSLT Stylesheet

Example 2 of XSLT Stylesheet

AN AUTOMATIC GENERATION METHOD OF DIFFERENTIAL XSLT STYLESHEET FROM TWO XML
DOCUMENTS

11

XML documents. The proposed method consists of
difference detection, difference extraction and
difference representation; we proposed algorithms
for each process. We have implemented prototype
software and showed it to be effective using special
contents such as stock price and news flash. We also
proposed new XSLT function.

In future work, we will investigate processing
time to generate differential XSLT stylesheet and
continue to work on improving the performance of
our algorithm. Future work includes quantitatively
evaluating the proposed method in the case of
general XML content. We will also confirm the
effectiveness of the proposed XSLT function.

REFERENCES

Bray, T. el al (2000) Extensible Markup Language (XML)
1.0 (Second Edition). W3C Recommendation.

Baker, M. et al (2000) XHTML Basic. W3C
Recommendation.

Mogul, Jeffrey C. et al (1997) Potential benefits of delta-
encoding and data compression for HTTP. Proceeding
of SIGCOMM 97. SIGCOMM 97.

Mogul, Jeffrey C. et al (2002) Delta Encoding in HTTP.
RFC3229. The Internet Engineering Task Force.

Clark, J. (2000) XSL Transformations (XSLT) Version 1.0.
W3C Recommendation.

Le Hors, A. et al (2000) Document Object Model (DOM)
Level 2 Core Specification Version 1.0. W3C
Recommendation.

Clark, J. (1999) XML Path Language (XPath) Version 1.0.
W3C Recommendation.

The GNU Project (2002) Diffutils [Software]. Version
2.8.1. www.gnu.org. Available from:
<http://directory.fsf.org/GNU/diffutils.html>
[Accessed 25 January 2005].

Open Source Technology Group (2004a) diffxml
[software]. Version 0.92A. SourceForge.net. Available
from: <http://diffxml.sourceforge.net/> [Accessed 25
January 2005].

Open Source Technology Group (2004b) SAXON
[software]. version 8.2. SourceForge.net. Available
from: <http://saxon.sourceforge.net/> [Accessed 25
January 2005].

The Apache Software Foundation (2004) xalan-J
[software] version 2.6.0. www.apache.org. Available
from:
<http://www.apache.org/dyn/closer.cgi/xml/xalan-j>
[Accessed 25 January 2005].

La Fontaine, R. (2001) A Delta Format for XML:
Identifying Changes in XML Files and Representing
the Change in XML. XML Europe 2001.

Curbera, F. P. et al (1999) Fast Difference and Update of
XML Documents. XTech'99 held in San Jose.

Ishikawa, N. et al (2002) Automatic Generation of a
Differential XSL Stylesheet From Two XML
Documents. Proceeding of WWW Conference 2002
held in Hawaii. WWW Conference 2002.

Appendix A: XSLT template mapping for
accordance, delete and change node.

Appendix B: XSLT template mapping for addition
node.

Appendix C: XSLT template mapping for addition
node with descendant templates.

<xsl:template match=“XPath of a
pattern node”>

<xsl:copy>

<xsl:apply-templates/>

</xsl:copy>

<Younger brother addition node/>

</xsl:template>

<xsl:template match=“XPath of a
pattern node”>

<xsl:copy/>

<Younger brother addition
node/>

</xsl:template>

Addition
node in
younger
brother

<xsl:template match=“XPath of a
pattern node”>

<Elder brother addition node/>

<xsl:copy>
<xsl:apply-templates/>

</xsl:copy>

</xsl:template>

<xsl:template match=“XPath of a
pattern node”>

<Elder brother addition node/>

<xsl:copy/>
</xsl:template>

Addition
node in
elder
brother

Addition
node in
Child

Same as left template<xsl:template match=“XPath of a
pattern node”>

<xsl:copy>

<Child addition node/>

</xsl:copy>

</xsl:template>

<xsl:template match=“XPath of a
pattern node”>

<Parent addition node>

<xsl:copy/>
</Parent addition node>

</xsl:template>

Mapping to XSLT

(No continuing process to
descendant of pattern)

<xsl:template match=“XPath of its
own position”>

<Parent addition node>

<xsl:copy>
<xsl:apply-template>

</xsl:copy>

</Parent addition node>

</xsl:template>

Addition
node in
Parent

Mapping to XSLT

(Continuing process to
descendant of pattern)

TYPE

<xsl:template match=“XPath of a
pattern node”>

<xsl:copy>

<xsl:apply-templates/>

</xsl:copy>

<Younger brother addition node/>

</xsl:template>

<xsl:template match=“XPath of a
pattern node”>

<xsl:copy/>

<Younger brother addition
node/>

</xsl:template>

Addition
node in
younger
brother

<xsl:template match=“XPath of a
pattern node”>

<Elder brother addition node/>

<xsl:copy>
<xsl:apply-templates/>

</xsl:copy>

</xsl:template>

<xsl:template match=“XPath of a
pattern node”>

<Elder brother addition node/>

<xsl:copy/>
</xsl:template>

Addition
node in
elder
brother

Addition
node in
Child

Same as left template<xsl:template match=“XPath of a
pattern node”>

<xsl:copy>

<Child addition node/>

</xsl:copy>

</xsl:template>

<xsl:template match=“XPath of a
pattern node”>

<Parent addition node>

<xsl:copy/>
</Parent addition node>

</xsl:template>

Mapping to XSLT

(No continuing process to
descendant of pattern)

<xsl:template match=“XPath of its
own position”>

<Parent addition node>

<xsl:copy>
<xsl:apply-template>

</xsl:copy>

</Parent addition node>

</xsl:template>

Addition
node in
Parent

Mapping to XSLT

(Continuing process to
descendant of pattern)

TYPE

<Addition node>

<xsl:apply-template select=“XPath of
lower pattern”/>

</Addition node>

<Addition node/>

Mapping to XSLT

(No continuing process to
descendant of addition node)

Additio
n node

Mapping to XSLT

(Continuing process to descendant
of addition node)

TYPE

<Addition node>

<xsl:apply-template select=“XPath of
lower pattern”/>

</Addition node>

<Addition node/>

Mapping to XSLT

(No continuing process to
descendant of addition node)

Additio
n node

Mapping to XSLT

(Continuing process to descendant
of addition node)

TYPE

<xsl:template match=“XPath of its
own position”>

<Data of Changed node>

<xsl:apply-templates/>

</Data of Changed node>
</xsl:template>

<xsl:template match=“XPath of
its own position”>

<Data of Changed node/>

</xsl:template>

Change

<xsl:template match=“XPath of its
own position”>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=“XPath of
its own position”>

</xsl:template>

Delete

No template

Mapping to XSLT

(No continuing process to
descendant of pattern)

<xsl:template match=“XPath of its
own position”>

<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>

</xsl:template>

Accordance

Mapping to XSLT

(Continuing process to
descendant of pattern)

TYPE

<xsl:template match=“XPath of its
own position”>

<Data of Changed node>

<xsl:apply-templates/>

</Data of Changed node>
</xsl:template>

<xsl:template match=“XPath of
its own position”>

<Data of Changed node/>

</xsl:template>

Change

<xsl:template match=“XPath of its
own position”>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=“XPath of
its own position”>

</xsl:template>

Delete

No template

Mapping to XSLT

(No continuing process to
descendant of pattern)

<xsl:template match=“XPath of its
own position”>

<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>

</xsl:template>

Accordance

Mapping to XSLT

(Continuing process to
descendant of pattern)

TYPE

WEBIST 2005 - INTERNET COMPUTING

12

