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Abstract. Recommendations are a valuable help for library users e.g. striving
to gain an overview of the important literature for a certain topic. We describe
a new method for generating recommendations for documents based on cluster-
ing purchase histories. The algorithm presented here is called restricted random
walk (RRW) clustering and has proven to cope efficiently with large data sets.
Furthermore, as will be shown, the clusters are very well suited for giving recom-
mendations in the context of library usage data.

1 Motivation and Introduction

Services like amazon.com’s “Customers who bought this book also bought. . .” are an
important service – for all involved parties: The customer receives assistance in finding
his way through the range of books offered by the shop, the bookseller has the possibil-
ity to increase its sales by proposing complementary literature to its customers [1].

Technically, a recommender service can be implemented in different ways. We will
present an innovative approach based on a fast clustering algorithm for large object
sets [2] and making use of product cross-occurrences in purchase histories: In our case,
the purchase histories are those of users of the Online Public Access Catalogue (OPAC)
of the university’s library at Karlsruhe, and a purchase is the viewing of a document’s
detail page in the WWW interface of the OPAC. A cross-occurrence between two doc-
uments is given when their detail pages have been viewed together in one user session.

Following the standard assumption for behavior-based recommender systems, we
assume that a high number of cross-occurrences hints at a high complementarity of two
documents that we can interpret in the recommender context as similarity.

The paper is structured as follows: We start by outlining existing recommender
systems and cluster algorithms in section 2. In section 3 we will present the restricted
random walk clustering algorithm before discussing the generation of recommendations
from clusters in section 4. Results will be shown in section 5 and a conclusion as well
as an outlook onto further research topics are given in section 6.

2 Recommender systems and Cluster Algorithms for Library
OPACs

General classification schemes for recommender systems have been presented by Resnick
and Varian [3], by Schafer et al. [1], and Gaul et al. [4].
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The systems we will scrutinize more closely are so-called implicit recommender
systems that generate recommendations from user protocol data – e.g. purchase his-
tories at the (online) store, Usenet postings or bookmarks –without the need of user
cooperation. This distinction between implicit and explicit recommender systems is
important since no additional customer effort is necessaryto gain these recommenda-
tions and thus incentive-related problems like free ridingor bias are minimal. This has
been discussed e.g. by Geyer-Schulz et al. [5] or Nichols [6].

All recommender systems mentioned here have in common that they do not perform
content analysis, contrary to information retrieval basedmethods as described for in-
stance by Semeraro [7], Yang [8] and others. This is important since in a hybrid library
like the one in Karlsruhe, only a fraction of the corpus is available in digital form.

Currently, two methods are being broadly used to generate recommendations from
purchase histories: A straightforward one employed for instance by amazon.com, and
an LSD model based approach using Ehrenberg’s repeat buyingtheory [9] used for
example at the university library in Karlsruhe [10].

The first approach is to recommend the books that have been bought (or viewed)
most often together with the book the customer is currently considering. The challenges
of this idea lie mainly in its implementation for large data sets, even if the matrix of
common purchases is quite sparse.

Another, more sophisticated model makes use of Ehrenberg’srepeat buying the-
ory [9, 10]. Its advantage lies in a noticeably better quality of the recommendations,
because the underlying assumption of a logarithmic series distribution allows to distin-
guish between random and meaningful cross-occurrences in amore robust way.

However, these recommender systems only take into account direct neighborhoods
in the similarity graph generated by the purchase histories. Each extension that includes
the neighbors of the neighbors into the recommendations quickly becomes computa-
tionally intractable. This is not the case with cluster-based recommender systems: the
recommendations do not only contain the documents directlyrelated to each other, but
the clusters also account for indirect relations where thisis necessary.

For a general overview of clustering and classification algorithms, we refer to Duda
et al. [11] or Bock [12]. In the past there have been some proposals for recommender
systems or collaborative filtering based on cluster algorithms [13, 14].

We chose restricted random walk clustering for two reasons:Its ability to cope with
large data sets that will be discussed in section 3.4 and the quality of its clusters with
respect to library purchase histories.

Viegener [15] investigated the use of cluster algorithms for the construction of a
library’s thesaurus extensively. On the one hand, Viegener’s results are encouraging be-
cause he found semantically meaningful patterns in librarydata. On the other hand,
all standard cluster algorithms proved to be computationally expensive – Viegener’s
results were computed on a supercomputer at the Universität Karlsruhe that is not avail-
able for routine library operations. Besides, the quality of the clusters generated by the
algorithms scrutinized may not be sufficient for recommendations. Single linkage clus-
tering for instance is prone to bridging, i.e. to connectingindependent clusters via an
object located between clusters, a bridge element.
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The bridging effect is much weaker with restricted random walk clustering as has
been shown by Schöll and Paschinger [16] and it is even smaller with the modifications
proposed in [2]. Furthermore the cluster size is more appropriate for giving recommen-
dations as will be demonstrated in section 3.3.

A more comprehensive overview of the performance of restricted random walk clus-
tering in comparison to other cluster algorithms can be found in the appendix of [17].

3 Restricted Random Walks

The basic idea of clustering with restricted random walks ona similarity graph as first
described by Scḧoll and Paschinger [18] is as follows: Start at a randomly chosen node,
and advance through the graph by iteratively picking a neighbor of the current node as
successor. While walking over the document set, we only consider edges for the neigh-
borhood that have a higher similarity than the edge taken in the last step. This procedure
is repeated until we arrive at a document via its highest-weighted incident edge, then
another walk is started. The foundation of the cluster construction is the assumption
that the higher the position of an edge in a walk is, the higheris its importance and thus
the probability that the two documents connected by the edgeare in the same cluster.

In this section, we will develop the idea in a more formal way.

3.1 The Input Data

We derive our input data from purchase histories generated by users of the Karlsruhe
OPAC hosted at the university’s library. As users browse through the catalogues, they
contribute to constructing raw baskets: Each session with the OPAC contains a number
of documents whose detail page the user has inspected. This data is aggregated and
stored in the raw baskets such that the raw basket of a document contains a list of all
other documents that occurred in one or more sessions together with it. Furthermore,
the cross-occurrence frequency of the two documents, i.e. the number of sessions that
contain both documents, is included in the raw basket.

We interpret these cross-occurrence frequencies as a measure for the similarity of
two documents and construct a similarity graphG = (V,E, ω) as follows:V , the set of
vertices, is the set of documents in the OPAC with a purchase history; if two documents
have ever been viewed together in a session,E ⊆ V xV contains an edge between these
documents, and the weightωij on the edge between documentsi andj is the number of
cross-occurrences ofi andj. ωii is set to zero in order to prevent the walk from visiting
the same document in two consecutive steps. The neighborhood of a document or node
consists of all documents that share an edge with it.

3.2 The Walks

Formally, a restricted random walk is a series of nodesR = (i0, . . . , ir) ∈ V r that has
a finite length –r in this case – contrary to normal random walks that may be infinite.

Tim−1im
= {(im, j)|ωimj > ωim−1im

} (1)
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Fig. 1. An example similarity graph

is the set of all possible successors edges that have a higherweight than(im−1, im) and
thus can be chosen in them + 1st step.

In order to obtain a sufficient covering of the complete document set, we start several
walks from each node, labeling the start node asi0. Currently, we use ten walks per
node, more sophisticated methods are being developed usingrandom graph theory [19].

For the start of the walk, we choose at random one of the start node’s neighbors as
i1, this choice is based on a uniform distribution. The set of possible successor edges
is constructed as the set of all incident edges ofi1 with a higher weight, i.e. similarity
thanωi0i1 : Ti0i1 = {(i1j)|ωi1j > ωi0i1}. From this set,i2 is picked at random using
a uniform distribution andTi1i2 is constructed accordingly. This procedure is repeated
until Tir−1ir

is empty, i.e. until no incident edge with a higher weight is found. For an
example of such a walk, consider Fig. 1.

When a walk starts from nodeA, the first successor node may either beB or C with
equal probability. IfC is chosen, the only successor edge isCB and after thatBA. As
we can see, at this point there is no edge with a higher weight than 7, the weight on
BA. Thus the walk ends here. Similarly, we might get walks likeBC, CDE, DCAB,
andED.

The formulation of the walk as a stochastic process on the edges of the graph and
the introduction of an “empty” transition state as shown in [2] lead to an intransitive
and infinite Markov chain, which allows the application of the corresponding tool set
for the investigation of the properties of the process.

From the description of the walks it is clear that there is no need to consider the
whole matrix at a time like other cluster algorithms do. Instead, only local information,
namely the neighborhood of the current node or one row of the similarity matrix per
step is needed in order to complete the walks. This is a factorthat greatly facilitates the
implementation and the time and space requirements of the algorithm.

3.3 The Clusters

For the actual cluster construction, several variants can be employed: The original ap-
proach by Scḧoll and Paschinger or the walk context introduced in [2].

It is important to note that clustering with restricted random walks does not generate
one cluster, but a hierarchy of clusters. Thus it is necessary to fix a cutoff levell, i.e.
a height at which a cut is made through the treelike structure(dendrogram) in order to
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determine the cluster for a given node. Ifl cannot be fixed in advance, cluster hierarchies
allow the user to interactively explore clusters by adapting the level and judging the
quality of the resulting clusters. If cluster members are sorted by the minimum level at
which they belong to the cluster, it is equally feasible to use them top members for
recommendations.

The original idea by Scḧoll and Paschinger was to generate, for a given node, com-
ponent clusters as follows: A series of graphsGk = (V,Ek) is constructed from the
data generated by all walks.V is the set of objects visited by at least one walk. An edge
(i, j) is present inEk if the transition(i, j) has been made in thek-th step of any walk.

Then, the union
Hl = ∪∞

k=lGk (2)

is constructed for each levell. Scḧoll and Paschinger define a cluster at levell as a
component (connected subgraph) ofHl. Consequently, if a path between two nodes
exists inHl, they are in the same cluster.

In the example given above containing the walksACBA, BC, CDE, DCAB, and
ED this means thatG3 = (V, {BA}) (the edges are undirected, thus there is no dis-
tinction betweenBA andAB) andG2 = (V, {CB,DE,CA}). As a consequence, the
only cluster at level 4 is{A,B}, at level 3 we get the clusters{A,B,C} and{D,E},
reflecting nicely the structure of the original graph.

The problem with this clustering approach is that we experienced very large clusters
with our purchase histories, sometimes containing severalhundred documents even at
the highest step level available. We conjecture that the reason is a bridging effect due to
documents covering more than one subject or read in connection with documents from
different domains thus linking clusters.

Furthermore, the step number as level measure has two major disadvantages: First,
it mixes final steps from short walks that have a relatively high significance with steps
from the middle of long walks where the random factor is stillstrong. This is evident
for the clusters atl = 3: AlthoughC andD have a high similarity, they do not appear
in the top-level cluster because the walks containing them are too short. Second, the
maximum step level is dependent on the course of the walks as well as the underlying
data set and cannot be fixed a priori.

As remedy for the large clusters, we introduced walk contextclusters: Instead of
including all documents indirectly connected to the one in question, we only consider
those nodes that have been visited in the same walk as the nodewhose cluster is to be
generated (the central cluster), respecting the conditionthat both nodes have a higher
step level than the given cutoff in the corresponding walk. This has the advantage of
reducing the cluster size on the one hand and the bridging effect on the other since it is
less probable that some bridge between different clusters has been crossed in the course
of one of the walks containing the document in question. Evenif a bridge element is
included in the walk, the number of documents from another clusters that are falsely
included in the currently constructed cluster is limited since only members of the walk
are considered that are located relatively near the bridge element.

For walk context clusters, different measures exist for thecluster level: The step,
the level and adjusted levels. The step shows the same weakness as described above
(cf. [2]) and will not be considered further. The level is defined as a relative position of
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the step in a walk.

l =
step number

total steps in this walk
(3)

For the adjusted levels, two variants were tested:

l− =
step number− 1

total steps in this walk
(4)

and

l+ =
step number

total steps in this walk+ 1
(5)

Those have the advantage of taking into account the total length of the walk: While
the first (and last) step from a one-step walk has much less meaning than the tenth from
a ten-step walk, both have the levell = 1. The adjusted levels, however, only converge
asymptotically to one for the last step in a walk. The longer the walk, the higher arel−

andl+ of its last step. The quality of these measures will be discussed in section 5.
In our example, the clusters atl = 1 are as follows:{A,B}, {B,A,C}, {C,B},

{D,E}, {E,D} where the first node is the central node for the respective cluster. As
can be seen, a cluster-based recommendation forB includes bothA andC whereasC ’s
recommendation does not containB. This will be discussed further in section 4.

3.4 Complexity

Letn be the number of documents or, more generally, nodes. Schöll and Paschinger [18]
give a time complexity ofO(log n) per walk; log2 seems to be a good estimate. Execut-
ing 10 walks per document we get a total complexity ofO(10n log n) = O(n log n).

Considering the development of the usage data over the last two years, it is possible
that the size of the neighborhood – and thus the degree of the nodes – is bounded by
a constant and independent ofn. Although the number of documents has grown, the
important factor for the complexity, namely the maximum size of the neighborhood of
a node, remains constant. Since the walk complexity is thus decoupled from the total
size of the graph, even a linear complexity is possible if further developments confirm
this conjecture [2].

The complexity of the cluster construction phase depends onthe implementation of
the data structures holding the walk data. With a hash table,the construction of a cluster
for a given document can be done inO(number of walks visiting the document∗ 1). If
the neighborhood size is constant, thus the length of the walks is constant with growing
n, the number of walks that have visited a certain document is also constant, otherwise,
it is O(log n): Assuming that the number of walks visiting a node more than once is
negligible, a total ofO(n log n) nodes is visited duringn walks of lengthO(log n),
leading to an average ofO(log n) walks visiting a node.

Currently, the input data comprises library purchase histories for about 1.8 million
documents in the catalogue out of which 800,000 have sufficient data for clustering.
They are connected by nearly 36 million edges, i.e. the average degree of a node is
about 39. On an Intel dual Xeon machine with 2.4 GHz, the computation of 10 walks
per document, that is about 8 million walks in total, takes about 2 days.
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4 Giving Recommendations

Once the clustering is complete, the recommendations follow naturally from the clus-
ters. Since clusters contain per definition objects that aremost similar to each other and
most dissimilar to non-members of the cluster, the recommendations for a given docu-
ment are the other documents in its cluster. The clusters generated by the walk context
method are not disjunctive. This means that, even if documents A andB are both in
the cluster for documentC, B is not necessarily in the cluster generated forA and vice
versa. This property is highly desirable when giving recommendations for books: Rec-
ommendations for bridge documents that belong to more than one domain (document
C in our example) should contain books from all domains that are concerned (e.g.A
andB), while documentA normally has no connection toB and thus should not be
listed in its recommendation list.

As mentioned, clustering with restricted random walks generates a hierarchy of
clusters, thus an optimal cutoff level has to be determined which will be done in the
following section.

5 Results

As shown in section 3.3, there are several variables influencing the quality and size of
recommendations. We have therefore tested the optimal combination of measure and its
value with a training sample of 40000 documents (approximately 5% of the documents).

In lack of a human test group, we took the manual classification scheme used in
Karlsruhe as benchmark that follows the SWD Sachgruppen [20]schema introduced
by the Deutsche Bibliothek. For each document in the training sample, we counted the
documents in the cluster that share at least one category in the manual classification.
This is the number of correctly recommended documents. Thuswe define the precision
as

precision=
number of correctly recommended documents

total number of recommended documents
(6)

Recall was not tested because for a recommender, quality is more important than
quantity. Furthermore, the manual classification only covers about 55% of the docu-
ments in the university’s catalogue, so that the number of documents that “should” be
recommended could not be determined without a considerableerror. Due to this fact, the
precision as described tends to be rather too low, especially if we consider the fact that
the quality of the manual classification system at Karlsruhediffers strongly between the
topics.

It must be noted that the fine tuning of the above factors is always a compromise
between precision on the one hand and the number of documentsfor which a cluster
can be generated as well as cluster size on the other. This canbe seen in Fig. 2. The
unadjusted levell obviously is an inferior measure. Both of the adjusted levels lie close
to each other, with a slight advantage forl+. This is not too surprising since asymptoti-
cally, they are equal.

The maximum precision that was reached by usingl+ was 0.95 at level 0.95, but
then, recommendations could only be generated for 11 documents out of nearly 40,000.
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Fig. 2. Precision versus number of documents with a recommendation

On the other hand, in order to have recommendations for more than 50% (26,067 in this
case) of the documents, a precision of 67% is feasible.

A manual evaluation of these results by a human test group is in preparation in order
to verify these first results.

6 Conclusion and Outlook

We have presented a new method for generating recommendations on large data sets in
an efficient way. The precision and performance we were able to achieve are promising.

However, there remain some open questions for further research: An important issue
that is currently in the focus of research is that of intelligently updating the clusters
when new usages histories arrive by reusing as much as possible from the existing
walks. Furthermore, a more intelligent decision for the number of walks that are started
from a node will be implemented in order to maximize coverageof the graph without
unnecessarily driving up computation time. For this purpose, it is also important to
better understand the asymptotic behavior of the algorithmas the number of walks
approaches infinity.

Although Scḧoll [17] has tested this clustering method against others inseveral
typical situations, it will be interesting to perform this comparison also on our library
data or – due to computational complexity – on a subset thereof.
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