
USING CORRESPONDENCE ASSERTIONS TO SPECIFY THE
SEMANTICS OF VIEWS IN AN OBJECT-RELATIONAL DATA

WAREHOUSE

Valéria Magalh̃aes Pequeno, Joaquim Nunes Aparı́cio
Depto. de Inforḿatica, Centro de Inteliĝencia Artificial, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Quinta da Torre 2829 516, Caparica, Portugal

Keywords: integrated information, object view, object-relational model, data warehouse.

Abstract: An information integration system provides a uniform query interface for collecting of distributed and hetero-
geneous, possibly autonomous, information sources, giving users the illusion that they interrogate a centralized
and homogeneous information system. One approach that has been used for integrating data from multiple
databases consists in creating integrated views, which allows for queries to be made against them.
Here, we propose the use of Correspondence Assertions (CAs) to formally specify the relationship between
the integrated view schema and the source database schemas. In this way, CAs are used to assert that the
semantic of some schema’s components are related to the semantic of some components of another schema.
Our formalism has the advantages of proving a better understanding of the semantic of integrated view, and of
helping to automate some aspects of data integration.

1 INTRODUCTION

An Integration Information (II) system provides a uni-
form interface for querying collections of pre-existing
data sources that were created independently. In the
recent years, the number of applications requiring in-
tegrated access to several distributed, heterogeneous
information sources has immensely increased. A
wide range of techniques has been developed to ad-
dress the problem of information integration in data-
bases (Zhou et al., 1996; Goasdoué et al., 2000).

Basically, there are two approaches to data integra-
tion: thevirtual integrated views(Batini et al., 1986)
and thematerialized integrated views(Zhou et al.,
1996). In the first one, data exits in the local sources
and the II system must reformulate the queries sub-
mitted to it, at run time, into queries against the
source schemas. The results from these queries on
the local sources are translated, filtered and merged
to form a global result and finally, the final answer
is returned to the user. Whereas, in the materiali-
zed approach, information from each source database
is extracted in advance and then translated, filtered,
merged and stored in a centralized repository, called
Data Warehouse (DW). Thus, when the user’s query
arrives, it can be evaluated directly at the repository,
and no access to the source databases is required.

There are some problems in integrating informa-
tion from multiple information sources. One of diffi-
culties is that, normally, the data have heterogeneous
structure and content. In this case, it is usual that the
integration systems are based on the specification of
a single integrated schema describing a domain of in-
terest. Additionaly, there is a set of source “descrip-
tions” (mappings) expressing how the content of each
source available to the system is related to the domain
of interest.

In our work, we used a formal object-relational
data model (Pequeno and Aparı́cio, 2003) for mod-
eling the integrated view schema and source database
schemas of a data warehousing environment. We pro-
pose the use of the Correspondence Assertions (CAs)
to formally specify the relationship between the view
schema and the source database schemas. CAs are
a special kind of integrity constraints that are used
to assert the correspondence among schema compo-
nents. In our research, we use the view CAs to se-
mantically elucidate how the view objects are synthe-
sized from the source class objects. Our formalism is
advantageous in proving a better understanding of the
semantics of integrated view, and in helping to auto-
mate some aspects of data integration. In this paper
we focus on how the CAs can be used for helping to
generate the integrated view definition.

219
Magalhães Pequeno V. and Nunes Aparício J. (2005).
USING CORRESPONDENCE ASSERTIONS TO SPECIFY THE SEMANTICS OF VIEWS IN AN OBJECT-RELATIONAL DATA WAREHOUSE.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 219-225
DOI: 10.5220/0002507602190225
Copyright c© SciTePress



Correspondence assertions to point out the seman-
tics of views already were developed for other works
(Lóscio, 1998; Vidal and Pequeno, 2000; Vidal et al.,
2001; da Costa, 2002). We extend the work of (Vidal
and Pequeno, 2000) to contemplate relational struc-
tures and aggregation functions. In (da Costa, 2002)
the CAs are used to assert the correspondence among
the view schema and the local sources schemas,
where these local sources schemas can be relational
or object-relational ones (like in our work). However,
to best of our knowledge, our paper is the first one to
specify CAs in Object-Relational(OR)data warehous-
ing environment, and to consider CAs between prop-
erties with aggregations functions.

The remainder of this paper is organized as fol-
lows. The next Section presents our formal model1.
Section 3 presents the formalism we use to assert the
relationship between the integrated view schema and
the source database schemas. Section 4 shows as CA
can be used to define the integrated view. Section 5
is devoted to present some previous approaches and
contrast them with ours. Finally, Section 6 concludes,
pointing out future work.

2 TERMINOLOGY

In this section, we present the basic concepts of the
object model used to represent the integrated view
schema and the source database schemas. This model
was based in Object-Oriented Data Model (OODM)
standard ODMG3 (Cattell et al., 2000), but we tried
to preserve the main characteristics of Relational Data
Model (RDM) proposed by Codd in (Codd, 1970).

In accordance with the object model described in
ODMG3, we distinguish objects from literals as fol-
lows: objects represent real world entities and have
a unique identifier (OID), while literals are special
types of objects that have no identifier.

An object is an instance of a type. Thus, types serve
as templates for their instances. In our model we de-
fine some types, namelly:base(integer, float, string
and boolean),reference, tupleandcollections(set, list
and array). The tuple type is an important type be-
cause it can represent the relation schema in RDMs.

The component of the type tuple consists of pro-
perties, which can be classified intoattributes and
relationships. The domain of an attribute is a lit-
eral or a collection of literals. On the other hand,
the domain of a relationship is an object or a collec-
tion of objects. Properties also can be classified into
singlevaluedandmultivalued. A property is denoted
singlevaluedwhen each instance of its type can be

1Only basic concepts are showed. For more details the
reader can refer to (Pequeno and Aparı́cio, 2003).

related to at most one object (or literal) of the prop-
erty domain. A property is denotedmultivaluedwhen
each instance of its type can be associated to many
instances of the property domain. We consider the
properties whose types arebase, referenceor tuple
as singlevalued properties and the properties whose
types are collections (set, listor array) as multivalued
properties.

We distinguish types from classes. A class is a
set of objects that is associated with a type. We
distinguish two kinds of classes: theobject classes,
whose instances of the type are objects; and thelit-
eral classes, whose instances of the type are literals.

It is common to present classes in diagrams2. In
Figure 1, the classesEMPLOYEE, DIVISION, MANA -
GER and GOOD are represent as rectangles. The at-
tributes with their types are inside the rectangles. Sin-
gle arrows represent single valued relationships and
double arrows represent multi valued relationships.

DIVISION


divName

1

: string


shortForm 

1

: string 
(K)


div

1


emp
1


mger
1


div
1


DB
1


EMPLOYEE


employeeName 

1

:string


telephone 
1
: {string}


identity

1

: integer 
(
K)


salary

1

:float


addSalary
1


GOOD


number
1
: integer 
(k)


goodName 
1
: string


sentPrice 
1
: float


MANAGER


managerName 
1
: string


identity

1

: integer 
(k)


Figure 1: An object-relational schema.

An OR schema is a set of class definitions that serve
as templates to generate the application domain ob-
jects. It is important to note that an OR schema can
be only a relational schema or an OR schema.

All classes in an OR schema have a distinct name, a
structured type, a finite set of signatures (the methods)
and an extension. The latter consists of a set of objects
that are members of a class at a given moment. An
instance of an OR schemaS populates object classes
with OIDs, assigns values to the OIDs, assigns values
to literal class names, and assigns semantics to the
methods signatures.

Objects can be related through paths connecting
two or more properties. From Figure 1, one can ob-
serve that an employee is related to his/her division
manager through a pathdiv1 • mger1. We distinguish

2The graphic notation is based on Unified Modeling
Language(UML) and ODMG3.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

220



two kinds of paths: areference pathand avalue path,
defined as:

Let C be a finite set of class names,P be a set of
properties names,T be a set of all types,props(C)
refers the set of properties defined for a classC and
dom(τ ) be the mapping that attaches to every type a
corresponding value set (domain).

Definition 1 (Reference path of a class) LetC1, C2,
..., Cn+1 in C, p1, ..., pn be properties inP and τ1,
..., τn be types inT such thatpi:τ i ∈ props(Ci), 1 ≤
i ≤ n. p1 • p2 • ... • pn is a reference path ofC1 iff
dom(τ i)= Ci+1, 1 ≤ i ≤ n. �

This means that instances ofC1 are related with the
instances ofCn+1 through the reference pathp1 • p2

• ... • pn.

Definition 2 (Value path of a class) LetC1, C2, ...,
Cn+1 in C, p1, ...,pn be properties inP andτ1, ...,τn

be types inT such thatpi:τ i ∈ props(Ci), 1 ≤ i ≤ n.
p1 • p2 • ... • pn is a value path ofC1 iff dom(τ i)=
Ci+1, 1 ≤ i ≤ n − 1 and dom(τn)= w, wherew is
a constant or a collection of constants (integer, float,
string or boolean values). �

This means that the instances ofC1 are related with
the valuew (with domain ofτn) of some property
from Cn through the value pathp1 • p2 • ... • pn.

In Figure 1,div1 • mger1 is a reference path (for
classEMPLOYEE) anddiv1 • mger1 • managerNa-
me1 is a value path (for classEMPLOYEE).

Now, we extend this model with the view classes
and view schema concepts, as follows. An view class
is defined as an object class derived from one or more
classes, called base classes (in a base schema). The
view class objects can be physically stored in a data-
base or not, and these objects can be the matching
of relational data or object-relational data from local
sources.

An integrated view schema, or simply view
schema, is formed by the set of view classes (from
one or more base schemas) and this view schema is
independent from its underlying schemas.

3 CORRESPONDENCE
ASSERTIONS

The Correspondence Assertions (CAs) of a view class
formally specify the relationships between the view
class and its base classes. In this way, CAs are used
to assert that the semantic of some schema compo-
nents are related to the semantic of some components
of another schema.

In our work, the relationship between the inte-
grated view schema and the source database schemas
can be specified by the following four kind of CAs:

Extension Correspondence Assertion(ECA), Object
Correspondence Assertion(OCA), Property Corres-
pondence Assertion(PrCA) andPath Corresponden-
ce Assertion(PaCA), described below. A formal de-
finition of these CAs can be found in (Pequeno and
Apaŕıcio, 2004).

3.1 Extension CAs

The ECAs are used to specify the relationship that
exists between the extension view class and exten-
sions base classes. Thus, the ECAS are used to define
which objects of the base classes should have a cor-
responding semantically equivalent object in the view
class. Two objectso1 ando2 are semantically equiva-
lent (o1 ≡ o2) if o1 ando2 represent the same object
in the real world.

We define the root classes of a view class V as all
the classes that are related to V through some ECA.
Consider, for example, the view classSTUDENTv (see
Figure 2), which contain informations about all stu-
dents in a university, including his/her salary if the
student also works.

V
1


STUDENT 

v


name 

v

:string


telephone 
v
: {string}


birthday

v

: string


salary
v
: float


ST&EMP

v


name 
v
:string


birthday

v

: string


salary

v

: float


manager 
v
: string


identity
v
:integer

number 
v
:string 
(k)


identity
v
:integer


number 
v
:string 
(k)


ST_COURSE 
v


course 
v
: integer 
(k)


nameCourse 

v

:{string}


students 
v
: integer


ST_GOOD 
v


quantity

v

:integer


sumPrice 

v

: float


minPrice 
v
: float


maxPrice 
v
: float

avgPrice 
v
:float


Figure 2: The integrated view schemaV1.

STUDENT


name
2
:string


telephone

2

: {string}


birthday
2
: string


COURSE


std

2


cre

2


DB
2


cod
2
: integer

name


2

: string
identity
2
: integer


number

2

:string 
(k)


Figure 3: The source database schemaDB2.

The STUDENTv root classes areSTUDENT in DB2

(see Figure 3) andEMPLOYEE in DB1 (see Figu-
re 1), which are related toSTUDENTv through the
following ECAs: ψ1: STUDENTv ≡ STUDENT and

USING CORRESPONDENCE ASSERTIONS TO SPECIFY THE SEMANTICS OF VIEWS IN AN
OBJECT-RELATIONAL DATA WAREHOUSE

221



ψ2: STUDENTv⊘ EMPLOYEE. ψ1 specifies thatSTU-
DENTv and STUDENT are equivalent, i.e., for each
STUDENT object there is one semantically equivalent
object inSTUDENTv, and vice-versa.ψ2 specifies that
the classesSTUDENTv andEMPLOYEE can have ob-
jects in common.

In accordance with the kind of ECA relating a view
class with its root classes, we distinguish six different
kinds of view classes:equivalence, selection, union,
difference, intersectionandgeneralization.

3.2 Object CAs

The OCAs specify the matching function that exists
between the objects of a class with the object of ano-
ther class. These assertions define the conditions in
which an object of a class is semantically equivalent
to an object of another class.

In the case of ECAs, given two classesC1 andC2

to any stateD there is a mapping function that defines
an one to one correspondence between the objects of
C1 andC2. We can have others mapping functions,
maybe one that makes the relationship among seve-
ral objects of a class with one object of another class.
This is the case, for example, of the view class with
aggregation functions.

Object matching (Doan et al., 2003) is an impor-
tant aspect of data integration and it can be expen-
sive to compute. Most systems assumes that a uni-
versal key is available for performing object match-
ing. In this work, we do not address this problem and,
as proposed in (Zhou et al., 1996), we assume that
match criteria is defined by a high-level mechanism.
In case of view classes without aggregations it defines
1:1 correspondences between the objects in families
of corresponding classes.

3.3 Property CAs and Path CAs

The PrCAs and the PaCAs specify how the pro-
perties values of the view class objects are de-
rived from properties values of their root classes
objects. For instance, the propertysalaryv of the
view classST&EMPv (see Figure 2) is defined by
the PrCA:ST&EMPv.salaryv ≡ EMPLOYEE.salary1,
which specifies that given an instancesof ST&EMPv,
if there is an instancee in EMPLOYEE such s
≡ e, then s.salaryv = e.salary1. The proper-
ty managerv of the classST&EMPv is defined by
the PaCAST&EMPv.managerv ≡ EMPLOYEE.div1•
mger1• managerName1, which specify that given
an instances of ST&EMPv, if there is an instance
e in EMPLOYEE such s ≡ e, then s.managerv =
e.div1.mger1.managerName1. Note that a view
class property can be associated with more than one
PrCA and/or PaCA. For instance, the propertynamev

of the view classST&EMPv has the following PrCAs:

ST&EMPv.namev ≡ EMPLOYEE.employeeName1
and ST&EMPv.namev ≡ STUDENT.name2. This
means that the values ofnamev can be derived from
employeeName1 andname2.

In a data warehousing environment, it is common
to have materialized views involving aggregation, be-
cause clients of DWs often want to summarize data
in order to analyze trends (Gray et al., 1995; V. Hari-
narayan, 1996). Thus, we define some PrCAs whose
properties values are gotten by aggregation functions.
These PrCAs are different from other CAs, for the
reason that there is no one to one correspondence
between the view schemas and the source database
schemas. Instead of this, there is a mapping of one
view class object to many root class objects.

At this point, we must extend the definition of a
root class to include the classes with aggregation.
Thus, we define the root classes of a view classV
as the set of all classes that are related toV through
some ECA or some PrCA with aggregation function.

In our work, the aggregation functions mentioned
are ones supported by the most of the queries lan-
guages, like SQL-3 (Fortier, 1999). The statistic ag-
gregation functions, as standard deviation and vari-
ance, are not considered in our work, although they
are supported in some OR databases (for instance, the
reader can refer to the work of (Chamberlin, 1996)).

We can distinguish six kinds of PrCAs with
aggregation: sum (summation),count, min (min-
imum), max (maximum), avg (average) and
group-by. In Figure 2, we can observe the view
classes: I)ST GOODv, which is a set of a sole
object and which is related to root classGOOD
through the PrCAs with aggregation, such that
Ψ6:ST GOODv.quantityv

∼=count(GOOD) and
Ψ7:ST GOODv.sumPricev

∼=sum(GOOD.sentPrice1);
and II) ST COURSEv, which is a set of objects and is
related to root classCOURSEthrough the PrCA with
aggregation of group-by presented in Figure 4.

Ψ8:ST COURSEv(coursev, nameCoursev,
studentsv) ∼=

COURSE(M[name2]A[cod2]F [(count,std2)] ∧
coursev → COURSE.cod2∧
nameCoursev → COURSE.name2∧
studentsv → count(COURSE.std2)

Figure 4: A property CA with aggregation of group-by bet-
weenST COURSEv andCOURSE.

In a PrCA with aggregation of group-by there are
notations that need some explanation. Thus, we
can specify this type of PrCA as following:V(p1,
...,pn, p’1, ..., p’m, p”1, ..., p”k) ∼= C(M[p1, p2,...,
pn]A[p’1, p’2, ..., p’m] F [(f 1, p”1), (f 2, p”2), ...,

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

222



(f k, p”k)]) ∧ V.p1 → C.p1 ∧ ... ∧ V.pn → C.pn

∧ V.p’1 → C.p’1 ∧ ... ∧ V.p’m → C.p’m ∧ V.p”1

→ f 1(C.p”1) ∧ ... V.p”k → f k(C.p”k), where:

1. M[p1, p2,..., pn], with pi:τ i ∈ props(C), 1 ≤ i ≤
n, is a list of properties of the root class defined in
C. Pay attention toM can be an empty list.

2. A[p’1, p’2, ..., p’m], with p’i:τ ′i ∈ props(C), 1 ≤
i ≤ m, is a list of grouping properties of the root
class specified inC.

3. F [(f 1, p”1), (f 2, p”2), ..., (f k, p”k)], with p” i:τ ” i

∈ props(C), 1 ≤ i ≤ k, is a list of (〈function〉,
〈property〉) pairs. In each pair,〈function〉 is one
of the allowed functions - such assum, avg and
max - and〈property〉 is a property of the root class
defined byC. Observe thatF can be an empty list.

4 USING CAs TO DEFINE
VIRTUAL VIEW CLASSES

In our approach, the integrated view schema of a DW
consists of three steps:

1. Integrated view modeling- Analyzes the require-
ments and specifies the integrated view schema
using a high-level data model. In this work,
we use our OR data model to represent the inte-
grated view schema (Pequeno and Aparı́cio, 2003).
The graphic notation used is based on UML and
ODMG3.

2. View correspondence assertions generation-
Combines the integrated view schema with the lo-
cal schemas in order to identify the CAs that for-
mally assert the relationships between the inte-
grated view schema and the source schemas. To
achieve this, all schemas should be expressed in the
same data model (called “common” data model).

3. Integrated view definition- Generates the inte-
grated view definition based on the integrated view
schema and the view CAs. The integrated view de-
finition consists of a set of queries, when the view
classes are virtual, and a set of rules that maintain
the view classes to reflect updates occurred in root
classes, when the view classes are materialized.

To illustrate our approach, consider the integrated
view schemaV1 in Figure 2, which integrates infor-
mation from employees inDB1 (see Figure 1) and
students inDB2 (see Figure 3).

The next step in the process of building the inte-
grated viewV1 is generating the view correspondence
assertions. This process consists of following steps:

1. Identify the Extension CAs.

2. For each ECAψ identified in step 1, whereψ re-
lates the view classV1, whose objects are of the

typeτv1, to root classC1, whose objects are of the
typeτ c1, do:

(a) Identify the Object CAs from view class objects
V1 to objects inC1.

(b) Compare the typesτ c1 andτv1. In this step the
typesτ c1 andτv1 are compared and the Proper-
ties CAs and Path CAs are identified.

3. Identify the Properties CAs with aggregation.

4. For each Property CA with aggregationψ identified
in step 3, whereψ relates the view classV2 to root
classC2, do:

(a) Identify the matching function between view
class objectsV2 to objects inC2.

Some examples of PrCAs are shown in Figure 5.

Ψ9:STUDENTv.numberv ≡STUDENT.number2
Ψ10:STUDENTv.identityv ≡STUDENT.identity2

Ψ11:STUDENTv.namev ≡STUDENT.name2

Figure 5: Some view PrCAs amongSTUDENTv and STU-
DENT

The final step in the process of building an inte-
grated view is the generation of the integrated view
definition. In our approach, the integrated view is
defined based on the integrated view schema and the
view correspondence assertions.

As we already mentioned, a view classV can be
implemented as a virtual class as well as a materi-
alized one. IfV is virtual, then the definition of this
class is determined from its root classes using its CAs.
Otherwise, it is materialized and an extension to this
class is explicitly created and rules to maintainV (to
reflect updates occurred in its root classes) are gene-
rated. In this paper, we only present definitions to the
queries to virtual view classes. Mechanisms to main-
tain materialized view classes are going to be investi-
gated in the next stage of our research.

During the search for a query representation, seve-
ral queries languages (SQL-3(Fortier, 1999), ODMG
OQL(Cattell et al., 2000) and O2View(dos Santos,
1994)) were considered, but none query representa-
tion has the expressivity necessary to define our view
classes. Thus, we decide to use a combination of the
SQL-3 and ODMG OQL query languages for the de-
finition of our virtual view classes. SQL-3 is an OR
database language, which is a model flexible enough
to represent and store any data type supported by re-
lational and OO models, as well as some in between.
ODMG OQL is an OO database language and it is
very close to SQL-2. Despite of these choices our
approach can be used to denote virtual view classes
definitions in any other languages.

USING CORRESPONDENCE ASSERTIONS TO SPECIFY THE SEMANTICS OF VIEWS IN AN
OBJECT-RELATIONAL DATA WAREHOUSE

223



createrow typeTSTUDENTv

(
numberv int,
namev char(30),
identifyv char(11),
telephonev set(char(9)),
birthday v char(8),
salaryv float,

);

Figure 6:STUDENTv type of view class definition.

create viewSTUDENTv of TSTUDENTv

as selectS.number2, S.name2, S.identity2,
S.telephone2, S.birthday 2, E.salary1

from STUDENT S in DB2 left outer join
EMPLOYEE E in DB1

on S.identity2 = E.identity1

Figure 7:STUDENTv view class definition.

Figure 7 presents the definition for the view class
STUDENTv. It extracts information about employees
and students from the local sourcesDB1 and DB2,
respectively. Keep attention to the fact that the view
classSTUDENTv is of the type TSTUDENTv (see Figu-
re 6). As we can observe, the clause “from” of the def-
inition for STUDENTv correctly implements an equiv-
alence view as specified by the ECAψ1, which has
some objects in common with another class (as speci-
fied by the ECAψ2. In this case, the equivalence view
represents aleft outer joinview. The clause “select”
of this definition is denoted based on PrCAs such that:
ψ9, ψ10 andψ11 (see Figure 5). The clause “on” of
this definition is denoted based on an object CA be-
tweenSTUDENT andEMPLOYEE.

5 RELATED WORK

There is large extension of related literature on in-
formation integration in databases, such that: Her-
mes(Subrahmanian et al., 1995) and Garlic(Carey
et al., 1995). The focus of all these systems are on
building a data integration architecture based on me-
diators(Wiederhold, 1992). The mediator concept is
slightly different from the DW. Mediators, normally,
are built to provide an integrated and transparent ac-
cess to heterogeneous and possibly distributed data
sources, and primarily are used in operational data en-
vironment. DWs provide an integrated access to data

derived from operational data and primarily are used
to support the decision-marking activities.

The majority of the works found in the litera-
ture focus on relational DWs((Iqbal et al., 2003)).
To the best of our knowledge, there is only one
work closely related to ours: the Object-Relational
Data Warehousing System (ORDAWA)(Czejdo et al.,
2001). Their approach, with regard to the problem
of integrating of heterogeneous data in a DW con-
sists on: 1) definition of an OO view schema; 2) de-
velopment of data structures called: Class Mapping
Structure(CMS), Object Mapping Structure(OMS),
and Log. CMS is used to store derivation links bet-
ween the view classes and their root classes. OMS is
used to identify the object matching between the view
classes and their root classes. Log is used to record
modifications made to root classes objects.

The aim of the data structure OMS in ORDAWA
is the same of Object CAs: to indicate when two ob-
jects are the same in the real world. Already the role
of CMS in ORDAWA is like our ECAs, PrCAs and
PaCAs, but our CAs are better in following aspects:

• They give us a clear notions of the relationship bet-
ween the integrated view schema and the source
database schemas, i.e., the designer/user has a bet-
ter understanding of the semantics associated with
the integrated view;

• They can assist the process of generating the inte-
grated view definition;

• They give us a high-level and language-indepen-
dent specification of an integrated view.

Seemingly, both approaches mention the same
kinds of view classes, but an issue addressed in this
paper that has not been addressed in ORDAWA is
the support to view classes with aggregation function,
which is an important issue in DW environment.

6 CONCLUSIONS

In this paper, we propose the use of Correspondence
Assertions (CAs) to formally assert the relationship
between the integrated view schema and the source
database schemas. An advantage of using CAs is that
they allow for the specification of the integrated view
in a formal and language-independent way. More-
over, they provide designers/users a better under-
standing of the semantic associated with the inte-
grated view.

We have showed how the CAs can be used for
aiding the generation of the integrated view defini-
tion. This process was illustrated with some exam-
ples showing how to generate queries (when the
view classes are virtual) based on the integrated view
schema and view CAs.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

224



As future work, we will investigate how the CAs
can be used to automate the maintenance of the inte-
grated view, when the view classes are materialized.
Another important direction for future work is the de-
velopment of an object-relational algebra to specify
view classes. Additionally, we intend to extend our
data model to contemplate view schema and view
class definitions.

REFERENCES

Batini, C. et al. (1986). A comparative analysis of method-
ologies for database schema integration.ACM Com-
puting Surveys, 18(4):323–364.

Carey, M. J. et al. (1995). Towards heterogeneous multi-
media information systems: The Garlic approach. In
International Workshop on Research Issues in Data
Engineering - Distributed Object Management, pages
124–131.

Cattell, R. et al. (2000). The object database standard
ODMG 3.0. Morgan Kaufmann Publishers.

Chamberlin, D. D. (1996).Using the new DB2 - IBM’s
object-relational database system. Morgan Kauf-
mann.

Codd, E. F. (1970). A relational model of data for large
shared data banks. InCommunications of the ACM,
pages 377–387.

Czejdo, B. D. et al. (2001). Design of a data warehouse
over object-oriented and dynamically evolving data
sources. In12th International Workshop on Database
and Expert Systems Applications, pages 128–132.

da Costa, J. P. (2002). Gerando tradutores para a atualização
de banco de dados através de vis̃oes de objetos. Mas-
ter’s thesis, Federal University of Ceara, Brazil.

Doan, A. et al. (2003). Object matching for information in-
tegration: a profiler-based approach. InProc. of Work-
shop on Information Integration on the Web.

dos Santos, C. (1994). Design and implementation of an
object-oriented view mechanism. Technical report,
Institut National de Recherche en Informatique et en
Automatique, France.

Fortier, P. (1999).SQL3 - Implementing the SQL foundation
standar. McGraw-Hill, EUA.

Goasdoúe, F. et al. (2000). The use of CARIN language
and algorithms for information integration: the PIC-
SEL system.International Journal of Cooperative In-
formation Systems, 9(4):383–401.

Gray, J. et al. (1995). Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and subto-
tals. Technical Report msr-tr-95-22, Microsoft.

Iqbal, S. et al. (2003). Distributed heterogeneous relational
data warehouse in a grid environment. The Computing
Research Repository (CoRR) cs.DC/0306109.

Lóscio, B. F. (1998). Atualização de ḿultiplas bases de
dados atrav́es de mediadores. Master’s thesis, Federal
University of Ceara, Brazil.

Pequeno, V. M. and Aparı́cio, J. N. (2003). A formal model
for object-relational databases. InProceedings of the
5th International Conference on Enterprise Informa-
tion Systems(ICEIS), volume 1, pages 327–333.

Pequeno, V. M. and Aparı́cio, J. N. (2004). Using corre-
spondence assertion to specify the semantics of views
in an object-relational data warehouse. Technical re-
port, New University of Lisbon.

Subrahmanian, V. et al. (1995). HERMES: A heterogeneous
reasoning and mediator system. Technical report, Uni-
versity of Maryland.

V. Harinarayan, A. Rajaraman, J. U. (1996). Implement-
ing data cubes efficiently. InProceedings of the ACM
SIGMOD Conference.

Vidal, V. et al. (2001). Using correspondence assertions for
specifying the semantics of XML-based mediators. In
Workshop on Information Integration on the Web, vol-
ume 3(11).

Vidal, V. and Pequeno, V. (2000). Self-maintanance of
match classes in integrated views. InAnais do XV
Simṕosio Brasileiro de Banco de Dados, Brasil.

Wiederhold, G. (1992). Mediators in the architecture of fu-
ture information systems. InIEEE Computer, volume
25(3), pages 38–49.

Zhou, G. et al. (1996). Generating data integration medi-
ators that use materialization.Journal of Intelligent
Information Systems, 6(2/3):199–221.

USING CORRESPONDENCE ASSERTIONS TO SPECIFY THE SEMANTICS OF VIEWS IN AN
OBJECT-RELATIONAL DATA WAREHOUSE

225


