
CONSTRUCTION OF DECISION TREES USING DATA CUBE 

Lixin Fu 
383 Bryan Bldg., University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA 

Keywords: Classification, Decision Trees, Data Cube 

Abstract: Data classification is an important problem in data mining. The traditional classification algorithms based 
on decision trees have been widely used due to their fast model construction and good model 
understandability. However, the existing decision tree algorithms need to recursively partition dataset into 
subsets according to some splitting criteria i.e. they still have to repeatedly compute the records belonging 
to a node (called F-sets) and then compute the splits for the node. For large data sets, this requires multiple 
passes of original dataset and therefore is often infeasible in many applications. In this paper we present a 
new approach to constructing decision trees using pre-computed data cube. We use statistics trees to 
compute the data cube and then build a decision tree on top of it. Mining on aggregated data stored in data 
cube will be much more efficient than directly mining on flat data files or relational databases. Since data 
cube server is usually a required component in an analytical system for answering OLAP queries, we 
essentially provide “free” classification by eliminating the dominant I/O overhead of scanning the massive 
original data set. Our new algorithm generates trees of the same prediction accuracy as existing decision tree 
algorithms such as SPRINT and RainForest but improves performance significantly. In this paper we also 
give a system architecture that integrates DBMS, OLAP, and data mining seamlessly. 

1 INTRODUCTION 

Data classification is a process of building a model 
from available data called training data set and 
classifying the objects according to their attributes. 
It is a well-studied important problem (Han and 
Kamber 2001), and has many applications in 
insurance industry, tax and credit card fraud 
detection, medical diagnosis, etc.  

The existing decision tree algorithms need to 
recursively partition dataset into subsets physically 
according to some splitting criteria. For large data 
sets, building a decision tree this way requires 
multiple passes of the original dataset, therefore, is 
often infeasible in many applications. In this paper 
we present a new approach of constructing decision 
trees using pre-computed data cube.  

Our main contributions in this paper include: 
• designing a new decision tree classifier 

built on data cube, and  
• proposing an architecture that takes the 

advantages of above new algorithm and 
integrates DBMS, OLAP systems, and data 
mining systems seamlessly.  

The remaining of the paper is organized as 
follows. The next section gives a brief summary of 
the related work. In Sec. 3, statistics tree structures 
and related data cube computation algorithms are 
described as the foundation of later sections. An 
architecture that integrates DBMS, OLAP, and data 
mining functions is proposed in Sec. 4. Sec. 5 
describes our new cube-based decision tree 
classification algorithm called cubeDT. Evaluation 
of cubeDT is given in Sec. 6. Lastly, we summarize 
the paper, and discuss the directions of our related 
future work.  

2 BACKGROUND 

Decision trees have been widely used in data 
classification. As its precursor algorithm ID-3 
(Quilan 1986), algorithm C4.5 (Quilan 1993) 
generates a simple tree in a top-down fashion. Data 
are partitioned into subsets recursively according to 
best splitting criteria determined by highest 
information gain until the partitions contain samples 
of the same classes. For continuous attribute A, the 
values are sorted and the midpoint v between two 
values is considered as a possible split. The split 

119
Fu L. (2005).
CONSTRUCTION OF DECISION TREES USING DATA CUBE.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 119-126
DOI: 10.5220/0002509801190126
Copyright c© SciTePress



 

form is A ≤ v. For a categorical attribute, if its 
cardinality is small, all subsets of its domain can be 
candidate splits; otherwise, we can use a greedy 
strategy to create candidate splits.  

SLIQ (Mehta, Agrawal et al. 1996) and 
SPRINT (Shafer, Agrawal et al. 1996) are more 
recent decision-tree classifiers that address the 
scalability issues for large data sets. Both use Gini 
index as impurity function, presorting (for numerical 
attributes), and breadth-first-search to avoid 
resorting at each node. Both SLIQ and SPRINT are 
still multi-pass algorithms for large data sets due to 
the necessity of external sorting and out-of-memory 
structures such as attribute lists.  

Surajit et al. (Chaudhuri, Fayyad et al. 1999) 
give a scalable classifier over a SQL database 
backend. They develop a middleware that batches 
query executions and stages data into its memory or 
local files to improve performance. At its core is a 
data structure called count table or CC table, a four-
column table (attribute-name, attribute-value, class-
value, count). Gehrke et al. give a uniform 
framework algorithm RainForest based on AVC-
group (a data structure similar to CC tables but as 
independent work) for providing scalable versions of 
most decision tree classifiers without changing the 
quality of trees (Gehrke, Ramakrishnan et al. 1998). 
With usually much smaller sizes of CC tables or 
AVC-group than the original data or attribute lists in 
SPRINT, these two algorithms generally improve 
the mining performance. However, they together 
with all other classification algorithms (as far as we 
know) including SLIQ and SPRINT still need to 
physically access (sometimes in multiple scans) 
original data set to compute the best splits, and 
partition the data sets in the nodes according to the 
splitting criteria. Different from these algorithms, 
our cube-based decision tree construction does not 
compute and store the F-sets (all the records 
belonging to an internal node) to find best splits, nor 
does it partition the data set physically. Instead, we 
compute the splits through the data cubes, as shown 
in more detail in Sec. 5.  

The BOAT algorithm (Gehrke, Ganti et al. 
1999) constructs a decision tree and coarse split 
criteria from a large sample of original data using a 
statistical technology called bootstrapping. Other 
classification methods include Bayesian 
classification (Cheeseman and Stutz 1996), back 
propagation (Lu, Setiono et al. 1995),  association 
rule mining (Lent, Swami et al. 1997), k-Nearest 
neighbor classification (Duda and Hart 1973), etc. 
Recently, a statistics-based classifier is built on top 
of data cube (Fu 2003). 

Since cubeDT is built on top of the technologies 
of OLAP and data cube, the performance of cube 
computation has a direct influence on it. Next, we 

briefly introduce some of the cube systems and cube 
computation algorithms. To compute data cubes, 
various ROLAP (relational OLAP) systems, 
MOLAP (multidimensional OLAP) systems, and 
HOLAP (hybrid OLAP) systems are proposed 
(Chaudhuri and Dayal 1997). Materialized views 
and indexing are often used to speedup the 
evaluation of data cubes and OLAP queries.  

Materializing all the aggregate GROUP_BY 
views may incur excessive storage requirements and 
maintenance overhead for these views. A view 
selection algorithm proposed by Harinarayan et al. 
(Harinarayan, Rajaraman et al. 1996) uses a greedy 
strategy to choose a set of views over the lattice 
structure under the constraint of certain space or 
certain number of views to materialize. Agarwal et. 
al (Agarwal, Agrawal et al. 1996) overlap or 
pipeline the computation of the views so that the 
cost of the processing tree is minimized. For sparse 
data, Zhao et al. proposed the chunking method and 
sparse data structure for sparse chunks (Zhao, 
Deshpande et al. 1997).  

For dimensions with small cardinalities, bitmap 
indexing is very effective (O'Neil 1987). It is 
suitable for ad-hoc OLAP queries and has good 
performance due to quick bitwise logical operations. 
However, it is inefficient for large domains, where 
encoded bitmap (Chan and Ioannidis 1998) or B-
trees (Comer 1979) can be used. Other work related 
to indexing includes variant indexes (O'Neil and 
Quass 1997), join indexes, etc. Beyer and 
Ramakrishnan develop BUC (bottom-up cubing) 
algorithm for cubing the group-bys that are above 
some threshold (Beyer and Ramakrishnan 1999). 
Johnson and Shasha (Johnson and Shasha 1997) 
propose cube trees and cube forests for cubing. In 
order to improve the performance of ROLAP 
algorithms, which often require multiple passes for 
large data sets, a multidimensional data structure 
called Statistics Tree (ST) (Fu and Hammer 2000) 
has been developed. The computation of data cubes 
that have arbitrary combination of different 
hierarchy levels is optimized in (Hammer and Fu 
2001). Other important recent work include Dwarf 
(Sismanis, Deligiannakis et al. 2002) and QC-trees 
(Lakshmanan, Pei et al. 2003).  

3 SPARSE STATISTICS TREES 

An ST tree is a multi-way and balanced tree with 
each level in the tree (except the leaf level) 
corresponding to an attribute. Leaf nodes contain the 
aggregates and are linked to facilitate the storage 
and retrieval. An internal node has one pointer for 
each domain value, and an additional “star” pointer 

ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

120



 

representing the entire attribute domain i.e. the 
special ALL value.  

ST trees are static structures. Once the number 
of dimensions and their cardinalities are given, the 
shape of the tree is set and will not change while 
inserting new records. The ST tree has exactly (V+1) 
pointers for an internal node, where V is the 
cardinality of the attribute corresponding to the level 
of the node. There is a serious problem of this static 
ST tree structure: when many dimensions have large 
cardinalities, the ST tree may not fit into memory, 
thus incurring too many I/O’s for insertions. To 
address this issue, we develop a new data structure 
called SST (sparse statistics trees) and related 
algorithm to evaluate data cubes. 
 
 

1 21 11 1 11 1 1

2

77

5 *

15

30 * * **

*

*

*

30 30 6 6

1 11 1

15 *

* *6 6

1

30

 
Figure 1: SST tree example. 

 
SST is very similar to ST but the pointers are 

labeled with attribute values instead of implied 
contiguous values. When a new record is inserted 
into SST, attribute values are checked along the 
paths with the existing entries in the nodes. If not 
matched, new entries will be added into the node 
and new subtrees are formed. Different from ST 
trees, where the internal nodes have pointers of 
contiguous indexes, an SST tree’s pointers have 
labels of corresponding attribute values not 
necessary contiguous.  Fig. 1 shows an SST tree 
after inserting first two records (5, 7, 30) and (2, 15, 
6). The paths accessed or newly created while 
inserting the second record are shown in dashed 
lines. 

If the number of records is large in the training 
data set, at some point during the insertion process, 
SST may not fit into memory any more. A cutting 
phase is then started, which deletes the sparse leaves 
and save them on disk for later retrieval. The leaves 
that are cut in a phase form a run. After all input 
records have been inserted, the runs are merged. The 
dense cubes are re-inserted into SST but the sparse 

cubes are stored on disks. While evaluating a cube 
query after SST initialization, we first check the in-
memory SST tree. Starting from the root, one can 
follow all the pointers corresponding to the 
constrained attribute values specified in the query 
for the dimension of that node, to the next level 
nodes. Recursively descending level by level, 
eventually we reach the leaves. All the values in the 
fall-off leaves are summed up as the final answer to 
the input query. Sparse leaves are retrieved from the 
merged run stored on disks. 

4 ARCHITECTURE 

Differently from transactional processing systems 
e.g. commercial DBMS, OLAP and data mining are 
mainly used for analytical purposes at the 
organizational level. “A data warehouse is a subject-
oriented, integrated, time-variant, and nonvolatile 
collection of data in support of management’s 
decision making process” (Inmon 1996). 

There are some advantages of deploying data 
analysis on top of data warehouses. Firstly, data is 
clean and consistent across the whole organization. 
Secondly, we can also use the existing infrastructure 
to manipulate and manage large amounts of data. 
Thirdly, the DBMS over a data warehouse can 
choose any interested subset of data to mine on, 
implementing an ad-hoc mining flexibility. OLAP 
and data mining algorithms can give “big picture” 
information and interesting patterns. OLAM (online 
analytical mining) system integrates OLAP with 
data mining and mining knowledge in 
multidimensional databases. A transaction-oriented 
commercial DBMS alone is, however, not up to 
efficient evaluation of complex ad-hoc OLAP 
queries and effective data mining because DBMS 
has different workloads and requirements. A natural 
solution is then to integrate three systems tightly. 
Fig. 2 is our proposed architecture for such an 
integrated system. 

The undirected lines represent bi-directional 
information flows. Users can submit SQL, CQL, and 
DMQL (data mining query language) queries 
through a common GUI API interface. The parser 
parses the user inputs and dispatches to the 
corresponding DBMS, OLAP, and OLAM engines if 
no syntactic errors are detected. Otherwise, the error 
messages are returned. Related metadata information 
is stored and will be used later by the data 
processing engines. The running results from the 
engines can be represented in various formats such 
as diagrams, tables, etc. through a visualizer. 

CONSTRUCTION OF DECISION TREES USING DATA CUBE

121



 

 

Parser

OLAMVisualizer

Database API / File System

Loader

OLAP

Metadata

ST trees

SQL CQLError DMQLResult
GUI API

 
Figure 2: System architecture that integrates DBMS, 

OLAP, and OLAM. 
 

In addition to mining directly on databases or 
files, the OLAM engine can also be built on top of 
OLAP engines, which is the main topic of this paper. 
The OLAP, or data cube server, instructs a loader to 
construct ST trees from databases or files so that 
later on the cube queries are evaluated using the 
initialized ST trees (or SST trees), which is 
significantly faster than using DBMS servers 
(Hammer and Fu 2001). After the ST tree is 
initialized, the data cubes can be extracted from the 
leaves to construct decision trees.  

5 CONSTRUCTION OF DECISION 
TREES USING DATA CUBE 

5.1 A General Template of Building 
Decision Trees 

In decision tree classification, one recursively 
partitions the training data set until the records in the 
sub-partitions are entirely or mostly from the same 
class. When the data cubes have been computed, in 
this section we will design a new decision tree 
algorithm which builds a tree from data cubes 
without accessing original training records any 
more. 

The internal nodes in a decision tree are called 
splits, predicates to specify how to partition the 
records. The leaves contain class labels that the 
records satisfying the predicates along the root-to-
leaf paths are classified into. We consider binary 
decision trees though multi-way trees are also 
possible. The following is a general template for 
almost all decision tree classification algorithms: 

 
Pa
If (all records in S are of the same 

class) then         return; 

rtition (Dataset S) { 

Compute the splits for each 
attribute; 
 Choose the best split to  
 partition S into S1 and S2; 
Partition (S1); 
Partition (S2); 

} 
 
An initial call of Partition (training dataset) will 

setup a binary decision tree for the training data set. 
Before the evaluation of the splits, the domain 
values of the training records are all converted into 
integers starting from 0. The conversions can be 
done during the scanning of original training data. 

5.2 Compute the Best Split for the 
Root 

Given a training dataset with N records each of 
which has d predictor attributes and the classifying 
attribute B, suppose that they are classified into C 
known classes Lp, p = 0, 1, …, C-1.  We use gini-
index to compute the splits at the root of the decision 
tree as follows.   

|||,|
,

),()()(

||,/)(

,1)(

2211

21

2
2

1
1

1

0

2

SnSn
SandSodpartitioneisSif

Sgini
n

n
Sgini

n
n

Sgini

SnnjBcountp

Sinjclassoffrequencytheispwhere

pSgini

j

j

C

j
j

==

+=

===

−= ∑
−

=

int

 

A split for continuous attribute A is of form 
value(A) ≤ v, where v is the upper bound of some 
interval of index k (k = 0, 1, …, V-1, where V is the 
total number of values for A). To simplify, let us just 
denote this as A ≤ k. The following algorithm 
evaluates the best split for attribute A. 

 
1. x[j]=0, for j =0, 1, …, C-1; 

CountSum = 0; 
2. Gini =  minS it = 0; min 1; pl
3. for i = 0 to V-1 do 
4.    countSum countSum+count(A=i);  
5.   n = countSum; n  =n-countSum; 1 2

6.   squaredSumL, squaredSumH = 0; 
7.   for j = 0 to C-1 do 
8.        x[j]=x[j]+count(A=i;B = j);  

  y = count(B=j) – x[j]; 
9.       sqSumL  sqSumL+(x[j] /n1)

2; 

ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

122



 

10.     sqS
11.   endfor 

   umH  sqSumH+(y /n2)
2; 

12.   gini(S1)=1-sqSumL; 
   gini(S2)=1- sqSumH; 
13. ni(S)=n gini(S )/n+n (S2)/n;   gi 1 1 2gini
14.   if  gini(S) < minGini then 
15.  MiniG
16.    endif 

    ini=gini(S);minSplit = i; 

17.  endfor 

Lines 1 and 2 initialize temporary variables 
countSum and array x, and current minimal gini idex 
minGini and its split position miniSplit. Lines 3 
through 17 evaluate all possible splits A≤ i (i=0, 1, 
…, V-1) and choose the best one. Each split 
partitions data set S into two subset S1 = {r in S | 
r[A] ≤ i} and S2 = S-S1. Line 4 tries to simplify the 
computation of the size of S1 i.e. count (A ≤ i) by 
prefix-sum computation. Similarly, array x[j] is used 
to compute count(A ≤ i; B = j) for each class j (j =0, 
1, …, C-1) in lines 1 and 8. All these count 
expressions are cube queries evaluated by the 
method in Sec. 3. 

For categorical attributes, the splits are of form 
value(A) ∈  T, where T is a subset of all the attribute 
values of A. Any such subset is a candidate split.  

n1 = count(value(A)∈  T), and n2= n-n1 
pj = count(value(A) ∈  T; B = j) / n1 
Knowing how to compute these variables, we can 

similarly compute the gini(S) for each split and 
choose the best one, as we did for continuous 
attributes. The final split for the root is then the split 
with the smallest gini index among all the best splits 
of the attributes. 

5.3 Partitioning and Computing 
Splits for Other Internal Nodes 

The best split computed above is stored in the root. 
All existing decision tree algorithms at this point 
partition the data set into subsets according to the 
predicates of the split. In contrast, cubeDT does not 
move data around. Instead, it just virtually partitions 
data by simply passing down the split predicates to 
its children without touching or querying the original 
data records any more at this phase. The removal of 
the expensive process of data partitioning greatly 
improves the classification performance. 

The computation of splits for an internal node 
other than the root is similar to the method in Sec. 
5.2 except that the split predicates along the path 
from the node to the root are concatenated as part of 
constraints in the cube query. For example, suppose 
a table containing customer information has three 
predictor attributes: age, income, and credit-report 
(values are poor, good, and excellent). The records 
are classified into two classes: buy or not buy 

computer. Suppose the best split of A turns out to be 
“age ≤ 30,” and now we are computing splits for the 
attribute income at node B. Notice that value n1 = 
count ( income  ≤  v; age ≤ 30), and n2 = count(age ≤ 
30) – n1.  Here, we do not actually partition data set 
by applying the predicate “age ≤ 30,” instead, we 
just form new cube queries to compute the splits for 
the node B. As before, these cube queries are 
evaluated through partial traversal of ST or SST 
trees.  

At node C, n1 = count ( income  ≤  v; age > 30), 
and n2 = count(age > 30) – n1. All other variables are 
computed similarly for evaluating the splits. 
Suppose that after computation and comparison the 
best split at B is “income ≤  $40, 000,” the diagram 
shown in Fig. 3. gives the initial steps of evaluating 
splits of nodes A, B, and C. 

 

Age <= 30

Income <= $40K

Yes No

A

B C

….

 
Figure 3: Example of computing splits of non-root internal 

nodes. 

6 SIMULATIONS 

To verify the effectiveness of cubeDT, we have 
conducted preliminary studies by comparing it with 
BUC (bottom-up cubing) (Beyer and Ramakrishnan 
1999) since the predominant time of cubeDT is 
spent on the construction of the SST. We compare 
with BUC because a family of algorithms such as 
BUC, BUC-BST, Condensed Cube, and QC-trees 
are all based on recursive partitioning and thus have 
similar I/O efficiency. All the experiments are done 
on a Dell PC Precision 330, which has a 1.7GHZ 
CPU, 256MB memory, and the Windows 2000 
operating system. All the algorithms are 
implemented in C++.  

CONSTRUCTION OF DECISION TREES USING DATA CUBE

123



 

0

5 0 0

10 0 0

15 0 0

2 0 0 0

Nu m be r of Re cords

R
un

tim
e 

(s
ec

.)

S S T 2 2 . 1 4 3 2 0 9 .8 4 2 0 . 4 6

B U C 5 0 . 9 117 . 9 7 4 3 .7 17 6 5 . 3

5 0 K 10 0 K 5 0 0 K 1M

 
Figure 4: Varying number of records. 

 
We used uniformly distributed random data and 

set each of the five dimensions with a cardinality of 
10. The number of records is increased from 50, 000 
to 1,000,000 (data set sizes from 1megabytes to 20 
megabytes). The runtimes are shown in Fig. 4. SST 
is about 2-4 times faster than BUC.  The 
performance improvements we achieve increase 
quickly with an increase in the number of records. 
Note that the runtimes are the times for computing 
the data cubes. 

We also investigate the behaviour of SST and 
BUC by varying the number of dimensions and 
using data of zipf distribution (factor is 2). We set 
the number of records is 100,000 and the cardinality 
of each dimension is fixed to 20. The number of 
dimensions increases from 4 to 8. Figure 5 shows 
the construction times. Clearly SST is scalable with 
respect to the number of dimensions. 

The query evaluation times are much faster than 
construction times. We measure the query times 
using total response times of 100 random queries. 
The queries are generated by first randomly 
choosing three dimensions where random numbers 
within the domains are selected as queried values. 
All other coordinates in the queries are star values. 
Since our SST can fit into memories in these 
experiments, queries can be evaluated without I/O’s. 
SST is one order faster than other BUC (Figure 6). 

0
2 0 0
4 0 0
6 0 0
8 0 0

10 0 0
12 0 0
14 0 0
16 0 0
18 0 0
2 0 0 0

Nu mbe r of dim e nsion s

R
un

ti
m

e 
(s

ec
.)

SST 2 3 .8 3 8 .2 58 .6 8 6 12 2

B U C 6 1 13 8 3 2 7.5 76 0 .9 174 3

4 5 6 7 8

 
Figure 5: Varying number of dimensions. 

0

0 .5

1

1.5

2

2 .5

3

Nu m be r of di m e n si on s

R
es

po
ns

e 
ti

m
e 

(s
ec

.)

S S T 0 .0 1 0 . 0 1 0 . 0 1 0 . 0 1

B U C 0 .8 11 0 .8 8 1 0 .8 8 1 2 . 3 9 3

4 5 6 7

 
Figure 6: Query response times. 

 
These experiments show that SST has a better 

performance, however, notice that cubeDT is 
general, i.e. the method of computing data cube is 
not restricted to our cubing algorithms using ST or 
SST trees. It can be on top of other data cube 
systems such as BUC as well.  

We also compare the performance of cubeDT, 
which includes both cube computation and decision 
tree generation phases, with that of RainForest 
algorithm. According to (Mehta, Agrawal et al. 
1996) and (Shafer, Agrawal et al. 1996), SLIQ 
produces accurate trees significantly smaller than the 
trees produced by IND-C4 (a predecessor of C4.5) 
but is almost one order faster than IND-Cart. 
SPRINT is faster and more scalable than SLIQ while 
producing exactly the same trees as SLIQ.  Previous 
experiments have also shown that RainForest in 
(Gehrke, Ramakrishnan et al. 1998) offers a 
performance improvement of a factor five over the 
previous fastest algorithm SPRINT.  So, we compare 
our cubeDT algorithm with RainForest. 

Among several implementations of RainForest 
such as RF-Read, RF-Write, RF-Hybrid, and RF-

ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

124



 

Vertical, RF-Read is fastest, assuming that the AVC-
groups of all the nodes at one level of the decision 
tree can fit into memory. In this case, one can only 
need one scan of reading the input data to compute 
the AVC-groups at that level and compute the best 
splits from the AVC-groups. Even in this ideal case 
(hardly usable in real applications), RainForest 
needs at least h passes of original potentially large 
input data set, where h is the height of the decision 
tree. Other implementations need more read/write 
passes. In contrast, cubeDT requires one pass of 
input set to compute the cubes, after that, the 
decision tree can be built from the data cube without 
touching the input data any more. In this set of 
experiments, we use uniform data set containing 
four descriptive attributes, each of size 10, and the 
class attribute has five class values. We increase the 
number of records from half million to five millions. 
Figure 7 shows that cubeDT is faster, and more 
importantly, the performance gap becomes 
significantly wider when I/O times become 
dominant. The runtimes of cubeDT have already 
included the cube generation times, without which 
the decision tree construction using cube will be one 
order faster than RainForest. 

 

0

2000

4000

6000

8000

10000

12000

14000

Number of Records

R
un

ti
m

e 
(s

ec
.)

cubeD T 1288 2100 93 06

R a inF o res t 1328 2481 120 37

500K 1M 5M

 
Figure 7: Varying number of records. 

 
Since cubeDT uses the same formulas for 

computing the splits, it produces the same trees as 
SLIQ, SPRINT, and RainForest algorithms, that is, 
they have the same accuracy of classification. The 
accuracy issue is orthogonal to the performance 
issue here. However, cubeDT is significantly faster 
due to direct computation of splits from data cube 
without actually partitioning and storing the F-sets, 
especially when input data sets are so large that the 
I/O operations become the bottleneck of 
performance. 

7 CONCLUSIONS AND FUTURE 
WORK 

In summary, in this paper we propose a new 
classifier that extracts some of the computed data 
cubes to setup decision trees for classification. Once 
the data cubes are computed by scanning the original 
data once and stored in statistics trees, they are ready 
to answer OLAP queries. The new classifiers 
provide additional “free” classification that may 
interest users. Through the combination of 
technologies from data cubing and classification 
based on decision trees, we pave the way of 
integrating data mining systems and data cube 
systems seamlessly. An architecture design of such 
an integrated system has been proposed. We will 
continue the research on the design of other efficient 
data mining algorithms on data cube in the future. 

REFERENCES 

Agarwal, S., R. Agrawal, et al. (1996). On The 
Computation of Multidimensional Aggregates. 
Proceedings of the International Conference on Very 
Large Databases, Mumbai (Bomabi), India: 506-521. 

Beyer, K. and R. Ramakrishnan (1999). Bottom-Up 
Computation of Sparse and Iceberg CUBEs. 
Proceedings of the 1999 ACM SIGMOD International 
Conference on Management of Data (SIGMOD '99). 
C. Faloutsos. Philadelphia, PA: 359-370. 

Chan, C. Y. and Y. E. Ioannidis (1998). Bitmap Index 
Design and Evaluation. Proceedings of the 1998 ACM 
SIGMOD International Conference on Management of 
Data (SIGMOD '98), Seattle, WA: 355-366. 

Chaudhuri, S. and U. Dayal (1997). "An Overview of Data 
Warehousing and OLAP Technology." SIGMOD 
Record 26(1): 65-74. 

Chaudhuri, S., U. Fayyad, et al. (1999). Scalable 
Classification over SQL Databases. 15th International 
Conference on Data Engineering, March 23 - 26, 
1999,  Sydney, Australia: 470. 

Cheeseman, P. and J. Stutz (1996). Bayesian 
Classification (AutoClass): Theory and Results. 
Advances in Knowledge Discovery and Data Mining. 
R. Uthurusamy, AAAI/MIT Press: 153-180. 

Comer, D. (1979). "The Ubiquitous Btree." ACM 
Computing Surveys 11(2): 121-137. 

Duda, R. and P. Hart (1973). Pattern Classification and 
Scene Analysis. New York, John Wiley & Sons. 

Fu, L. (2003). Classification for Free. International 
Conference on Internet Computing 2003 (IC'03) June 
23 - 26, 2003, Monte Carlo Resort, Las Vegas, 
Nevada, USA. 

CONSTRUCTION OF DECISION TREES USING DATA CUBE

125



 

Fu, L. and J. Hammer (2000). CUBIST: A New Algorithm 
For Improving the Performance of Ad-hoc OLAP 
Queries. ACM Third International Workshop on Data 
Warehousing and OLAP, Washington, D.C, USA, 
November: 72-79. 

Gehrke, J., V. Ganti, et al. (1999). BOAT - Optimistic 
Decision Tree Construction. Proc. 1999 Int. Conf. 
Management of Data (SIGMOD '99), Philadephia, 
PA, June 1999.: 169-180. 

Gehrke, J., R. Ramakrishnan, et al. (1998). RainForest - A 
Framework for Fast Decision Tree Construction of 
Large Datasets. Proceedings of the 24th VLDB 
Conference (VLDB '98), New York, USA, 1998: 416-
427. 

Hammer, J. and L. Fu (2001). Improving the Performance 
of OLAP Queries Using Families of Statistics Trees. 
3rd International Conference on Data Warehousing 
and Knowledge Discovery DaWaK 01, September, 
2001, Munich, Germany: 274-283. 

Han, J. and M. Kamber (2001). Data Mining: Concepts 
and Techniques, Morgan Kaufman Publishers. 

Harinarayan, V., A. Rajaraman, et al. (1996). 
"Implementing data cubes efficiently." SIGMOD 
Record 25(2): 205-216. 

Inmon, W. H. (1996). Building the Data Warehouse. New 
York, John Wiley & Sons. 

Johnson, T. and D. Shasha (1997). "Some Approaches to 
Index Design for Cube Forests." Bulletin of the 
Technical Committee on Data Engineering, IEEE 
Computer Society 20(1): 27-35. 

Lakshmanan, L. V. S., J. Pei, et al. (2003). QC-Trees: An 
Efficient Summary Structure for Semantic OLAP. 
Proceedings of the 2003 ACM SIGMOD International 
Conference on Management of Data, San Diego, 
California, USA, June 9-12, 2003. A. Doan, ACM: 
64-75. 

Lent, B., A. Swami, et al. (1997). Clustering Association 
Rules. Proceedings of the Thirteenth International 
Conference on Database Engineering (ICDE '97), 
Birmingham, U.K.: 220-231. 

Lu, H., R. Setiono, et al. (1995). NeuroRule: A 
Connectionist Approach to Data Mining. VLDB'95, 
Proceedings of 21th International Conference on Very 
Large Data Bases, September 11-15, 1995, Zurich, 
Switzerland. S. Nishio, Morgan Kaufmann: 478-489. 

Mehta, M., R. Agrawal, et al. (1996). SLIQ: A Fast 
Scalable Classifier for Data Mining. Advances in 
Database Technology - EDBT'96, 5th International 
Conference on Extending Database Technology, 
Avignon, France, March 25-29, 1996, Proceedings. G. 
Gardarin, Springer. 1057: 18-32. 

O'Neil, P. (1987). Model 204 Architecture and 
Performance. Proc. of the 2nd International Workshop 
on High Performance Transaction Systems, Asilomar, 
CA: 40-59. 

O'Neil, P. and D. Quass (1997). "Improved Query 
Performance with Variant Indexes." SIGMOD Record 

(ACM Special Interest Group on Management of 
Data) 26(2): 38-49. 

Quilan, J. R. (1986). Introduction of Decision Trees. 
Machine Learning. 1: 81-106. 

Quilan, J. R. (1993). C4.5: Programs for Machine 
Learning, Morgan Kaufmann. 

Shafer, J., R. Agrawal, et al. (1996). SPRINT: A Scalable 
Parallel Classifier for Data Mining. VLDB'96, 
Proceedings of 22th International Conference on Very 
Large Data Bases, September 3-6, 1996, Mumbai 
(Bombay), India. N. L. Sarda, Morgan Kaufmann: 
544-555. 

Sismanis, Y., A. Deligiannakis, et al. (2002). Dwarf: 
shrinking the PetaCube. Proceedings of the 2002 ACM 
SIGMOD international conference on Management of 
data (SIGMOD '02), Madison, Wisconsin: 464 - 475. 

Zhao, Y., P. M. Deshpande, et al. (1997). "An Array-
Based Algorithm for Simultaneous Multidimensional 
Aggregates." SIGMOD Record 26(2): 159-170. 

 

ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

126


