
DWG2XML: GENERATING XML NESTED TREE STRUCTURE
FROM DIRECTED WEIGHTED GRAPH

Kate Y. Yang, Anthony Lo, Tansel Özyer, and Reda Alhajj
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

Keywords: XML, directed graph, nested structure, constrained conversion, relational database.

Abstract: The overall XML file length is one of the critical factors when we need to transfer a large amount of data
from relational database into XML. Especially in the nested tree structure of XML file, redundant data in
the XML file can add more cost on database access, network traffic and XML query processing. Most
previous automated relational to XML conversion research efforts use directed graphs to present relations in
the database and nested trees in the XML structure. However, they all ignore that different combinations of
tree structures in a graph can have a big impact on the XML data file size. This paper addresses this nested
structure data file size problem. It proposes a module that can find the most convenient tree structure for the
automated relational to XML conversion process. It provides a plan generator algorithm to list all the
possible tree structures in a given directed weighted graph. Also it analyzes the data size of each plan and
shows the convenient tree structure to the user. It can finally create the targeted XML documents for the
user.

1 INTRODUCTION

XML is becoming one of the most widely used
technologies for data exchange over the internet. But
most business data is currently stored in relational
database systems, which have been well developed
for a long time. So, there are large demands for
transforming such relational databases into XML
documents. Considerable amount of work has been
done to help people in this area. Basically, we can
group those studies into two categories based on the
amount of data to be transferred from relational
database to XML.

The first covers the case when only part of the
database is of interest. Specific database queries are
needed in order to fetch the target data. XML
Extender (Chaudhuri, 2003), SilkRoute (Fernandez et
al, 2002) and DB2XML (Shanmugasundaram et al,
2001) are all under this category. However, all these
tools need human experts working on mapping from
the relational schema to the XML schema.
Therefore, when large amount of relational schemas
and data need to be translated into XML documents,
a significant investment of human effort is required
to initially design the target schema. The second
group of approaches concentrates on automatically

inferring XML schema out of the relational database
schema using semantic constraints, such as Net &
CoT (Lee et al, 2002a; Lee et al, 2002b; Lee et al
2001), ConvRel & Con2XMl (Duta, 2004) and the
reverse engineering based approach for converting
Legacy RDB to XML (Wang et al, 2004; Lo et al,
2004). They can convert data from the relational
database to XML without human input. Finally,
VIREX (Lo et al, 2004) is an approach capable of
handling both strategies.

In this paper, we propose a method which
focuses on the second group of approaches. To
justify for the motivation of our method, we start
with a brief introduction for each recent approach in
this group; we mainly address the nested XML tree
structure problem in those approaches. Then we
propose our DWG2XMl method which extends
existing studies. It has an algorithm that can
generate all possible XML nested tree plans from a
given directed graph. We provide each plan’s data
file size and compact rate to help choosing a good
nested structure and then we generate XML
document for the selected plan.

The rest of the paper is organized as follows.
Section 2 is an overview of three different
approaches for conversion from relational databases

19
Y. Yang K., Lo A., Özyer T. and Alhajj R. (2005).
DWG2XML: GENERATING XML NESTED TREE STRUCTURE FROM DIRECTED WEIGHTED GRAPH.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 19-26
DOI: 10.5220/0002512500190026
Copyright c© SciTePress

into XML, including their contributions and
drawbacks. Our DWG2XML method is presented in
Section 3. Section 4 is the conclusions.

2 OVERVIEW OF THE EXISTING
APPROACHES

2.1 Reverse engineering approach

Alhajj (2003) presents a reverse engineering
approach that extracts the entity-relationship (EER)
schema from the relational schema. The concepts
and mechanism provided contribute to legacy
database maintenance, re-engineering or updating to
another database technique. Based on the analysis of
the relationships between tables in a legacy
database, a relational intermediate directed (RID)
graph consistent with the EER diagram is derived to
express all possible unary, binary and nary
relationships between the given relations. Then, it
develops algorithms to eliminate the symmetry and
transitivity in RID, if exist. It also identifies is-a
links in the RID graph to deliver an optimized RID
as the final outcome, which can be used to derive the
XML schema. Such a conversion approach has been
implemented by Wang, et al (2004). Then they
translate the RID graph into XML schema in a
process called forward engineering. A flat XML
schema is automatically derived from the RID
graph. Our DWG2XML approach can be easily seen
as an extension to complete RID to nested XML
schema translation; this is all described in Section 3.

2.2 CoT and NeT

Lee, et al (2002a; 2002b; 2001) proposed an
approach for creating both flat and nesting XML
structures from the relational database schema. The
Flat Translation (FT) converts each table into a flat
element structure. The Nesting-based Translation
(NeT) derives nested structures from a flat relational
model by the use of the nest operator. This nest
operator process is applied to a single table at a time
and it can create nested structures only for non-
normalized tables in normalized databases. Net is
useful to decrease data redundancy in non-fully
normalized relational databases. But it only works
on tables one by one and depends on the relational
schema as well as the actual data stored in the
database.

Then Lee et al extended the nesting approach to
multiple tables, using Constraints-based Translation
(CoT) algorithm. It is one of the first approaches

that deal with relationships. The source database
contains several interconnected tables and based on
the cardinality of the binary relationships, two types
are identified one-to-one (1:1) and one-to-many
(1:M). A directed Inclusion Dependency (IND)
Graph of tables is created from which an empirical
way to nest XML structures is identified. However,
a table can only have one child. If there are more
children relations for a particular parent table, these
relationships are simulated by using reference key
expression.

2.3 ConvRel and Conv2XML

Conv2XML and ConvRel are two algorithms
proposed by Duta, et al (2004) for converting
relational schema to XML Schema, focusing on
preserving the source relationships and their
structural constraints.

ConvRel analyzes each type of relationship and
determines a set of candidate XML structures
capable of representing the analyzed relationship
type. The possible XML structures are classified as
Parent-Child, Child-Parent nested structures, flat
structure using keyref references and combination
nested with keyref structure. Those structures are
filtered depending on criteria such as the nested and
compact structure, and the size of XML data file.
ConvRel classifies each type of possible relationship
in the database into the best XML structure spot. But
this approach only works with a single relationship
at a time; it is not applicable for relationships
involving more that two tables.

Conv2XML algorithm extends ConvRel to
create a nested structure for the entire database. It
uses a graph representation that combines all
structures discovered previously in ConvRel. In this
graph, the vertices are tables and edges represent
connections between tables as defined by ConvRel.
Two categories of edges exist in this directed graph:
1) full edges representing nested structures; and 2)
dotted edges representing relationships for the
reference key. The ConvRel algorithm is thereby
transformed into the problem of discovering trees in
a directed graph.

Compared to the NeT and CoT approach,
ConvRel and Conv2XML approach solved the unary
relationship problem between tables. It also can
present multiple tables as a tree structure. However,
from the directed graph, there exist different nested
tree structures. The method proposed by Duta et al
is depth-first algorithm, which ends up with only
one tree structure solution. As a result, DWG2XML
as described in this paper is more comprehensive; it
considers all possible tree structures instead.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

20

3 THE DWG2XML APPROACH

3.1 The motivation

In Section 2, we briefly discussed three different
approaches for automatically converting relational
database to XML structure. Even though those
systems vary in terms of the kind of database
(legacy versus catalog-based) they can convert, they
all share a common feature of using the directed
graph to capture the relationships in the database.
The directed graph is different from the XML tree
structure we need. In a directed graph, for any given
node there is no restriction on the number of parent
and child nodes. But in the XML tree structure, a
node can have only one parent. So when
relationships between tables in the database are
presented as a directed graph, there can be different
ways to construct nested tree structures. Selecting a
particular one as the most appropriate choice for the
XML structure will have impact on the overall XML
data file length and on the database query access
time. This problem has not received enough
attention in the literature yet.

As a result, DWG2XML approach presented in
this paper may be considered as extending the
previous work that concentrates on the directed
graph. In particular, our approach focuses on
analyzing the given directed graph, finding all
possible nested tree structures that can be used to
construct the XML document and selecting the most
appropriate one to generate an XML document.

DWG2XPG
Plan Generator

Plans &
Analysis JTree

nested
expression

XML
Document

Database

DWG Graph
Base on
Con2XML
or RID

DWG2XML

View & Select

Figure 1: DWG2XML System Architecture

3.2 DWG2XML overview

The architecture of DWG2XML is shown in Figure
1. The DWG graph is generated by the Con2XML
algorithm. It can be either RID graph from reverse

engineering, or a directed graph from Net with some
minor changes. An example RID graph is shown in
Figure 2. DWG2XPG plan generator finds all tree
structure combinations for the input DWG graph
and saves each combination as a tree structure plan.
Then, it queries the database to analyze each plan’s
data file size and data compactness rate; the results
are summarized and displayed to the user as a plan
data table. Users can view the tree structure of each
plan as a JTree expression. From plans with the
same data file length and compactness rate, the user
can always pick the one that has more semantics.

DWG2XML: GENERATING XML NESTED TREE STRUCTURE FROM DIRECTED WEIGHTED GRAPH

21

Figure 2: Example RID graph generated by VIREX (Lo et al, 2004)

3.3 An example database and the
corresponding DWG graph

There are six tables in our example database from a
time schedule system; it has the following relational
schema in which primary keys are underlined and
foreign keys are italic:
Groups (groupName)
Users(loginName, name, email, accessLevel,

password, groupName)
Appointments(appointmentId, loginName, sDate,

startTime, endTime, note, meetingId)
Meetings(meetingId, type, chairLoginName,

meetingRoomNum)
Notices(noticeId, loginName, meetingId, readMark,

message)
MeetingRooms(meetingRoomId, seatNumber,

projector, multimedia)
The structural constraints of all relationships that
exist in the example relational schema are:

Groups (1; 1): (1; M) Users
Users (1; 1): (0; M) Appointments
Users (1; 1): (0; M) Notices
Appointments (1; M): (0; 1) Meetings
Meetings (1; 1): (1; M) Notices
 MeetingRooms (1; 1): (0; M) Meetings

Groups

Users

Appointments

Meetings

Notices MeetingRooms

Figure 3: Input DWG graph

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

22

We can generate a corresponding directed graph
(shown in Figure 3), which includes all the above
relationships. We implement this graph as a directed
weighted graph (DWG), which has the following
properties:

1. It is a directed graph; implemented by
having each edge connecting source node to
target node. Here, source represents the
relation of the primary key and target is the
relation that contains the corresponding
foreign key.

2. Weight has predefined values based on the
relationship type. In this implementation,
one-to-one relationships get the weight 1,
one-to-many relationships get the weight 2,
and dotted (keyref) relationships are
assigned the weight 3.

3. It is possible to have several un-connected
trees in one DWG graph

3.4 Plans generating algorithm

In this section, we present the plan generator
algorithm, which generates all possible nested tree
XML structures. We analyze the incoming edges of
a node. Having more than one incoming edge for a
node means that there is more than one path to reach
this node in the graph. So, we have to list all
possible paths to reach each node in the graph.
Steps of the plans generation algorithm are given
next:
Input: DWG graph
Output: Vector Plans, each plan has nested tree
XML structure.
Variables: - Plans[] is DWG graph Vector

 - processingNodeQ[] is a vector to keep
all nodes waiting for process;

 - unprocessingNodeQ[] is for the
unconnected nodes in the graph.

 It is initialized with all nodes in DWG
Steps:
1. Select a starting node, push it into

processingNodeQ, and mark it as a working
node.

2. For each outgoing edge of the working node,
get the target node of the outgoing edge, i.e., the
child of the working node. Add the child node
and connecting edge into the corresponding
DWG graph to Plans []. For the first node,
create a DWG graph and add to Plans []. Push
each child node into a processing Queue.

3. For each incoming edge of the working node,
get the source node of the incoming node, i.e.,
the parent node. Push this source node into
processingNodeQ.

a. If there are more than two incoming edges,
for each plan in the plans vector, make a
new copy.

b. In the existing old plan, add the source node
in plan, add the incoming edge as weight 3,
presenting no parent-child relationship.

c. In the duplicated new plan, add source node
in the plan, add outgoing edge as edge with
weight 2, and mark all other outgoing edges
as weight 3.

4. After checking both incoming and outgoing
edges of the working node, remove it from the
processingNodeQ and unprocessingNodeQ; pop
up the next node from processingNodeQ; mark
it as the new working node; and go to Step 1.

5. If unprocessingNodeQ is not empty, pop the
next node from unprocessingNodeQ, if any, and
go to Step 1.

Step 3 of the plan generator algorithm

guarantees only one parent for each node. Step 5
guarantees that all disconnected nodes have been
processed.

After we apply the plan generator algorithm to
the example input graph, we can generate the four
plans shown in Figures 4-7. As we can see, the
nested structure plan 3 (Figure 6) has the most
nested structure. MeetingRooms table has no
nested data. It will be converted to a flat structure
in the XML document.

Groups

Users

Appointments

Meetings

Notices

MeetingRooms

Figure 4: Nested structure plan 1

DWG2XML: GENERATING XML NESTED TREE STRUCTURE FROM DIRECTED WEIGHTED GRAPH

23

Groups

Users

Appointments

Meetings

Notices

MeetingRooms

Figure 6: Nested structure plan 3

Groups

Users Appointments

Meetings Notices

MeetingRooms

Figure 7: Nested structure plan 4

Groups

Users

Appointments

Meetings

Notices

MeetingRooms

Figure 5: Nested structure plan 2

In nested structure plan 1 (Figure 4), Users data

has Notices data set and Appointments subtree. In
plan 2 (Figure 5), Users data has two nested datasets
and MeetingRooms data has one data set. The last
plan (Figure 6) has two trees with equal number of
nodes. These different nested plans have different
data file sizes and compactness rates. This is
analyzed in more details in the next section.

3.5 Find a good plan

After we have all the possible solutions for XML
nested structures. We have to choose the best one to
convert to XML document. The XML data file size
is one of the most important factors for choosing the
good plan. Since we convert the whole database into
XML, the smallest the data file size is, the less are
duplicated data and relational database query/access
time. Considering the participation ratio we have for
each given relationship, if all parents and their
children nodes have all mandatory one-to-one and
one-to-many relationships, then all plans can have
almost the same data file size. However, if there is -
Parent(0,1):(1,M)Child- kind of relationship, then
the data in the child branch can have a heavy
duplication, depending on the number of levels
below this child node.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

24

Figure 8: User interface

In our implementation, we use three hash tables

to keep all the metadata we need from the relational
database, including primary keys, foreign keys, and
columns for each table. We only query the metadata
once to save the database access time. By using this
information, we can calculate simple data file size
for one-to-one relationship. For partially duplicated
nested tables, we can compose SQL query from
primary-foreign keys set constraint and query the
data file size from the database.

One of the screen from the developed approach
is shown in Figure 8; it displays the data files size
and compactness rates for the different plans
produced by our approach. The right hand panel has
a JTree expression for the nested XML structure
plan 3 (Figure 6). In our example, one appointment
can have zero or one meeting and one meeting can
involve more than one appointment in the relational
database. So the Meetings table data are duplicated.

Table 1: Pseudo-code of extend post order traversal
algorithm

ExtandPostOrderTravers (parentNode, tableTag)
{

for (each outgoing edge of the working node)
{

workingNode=outgoing edge.getTargetNode()
sqlQuery=composeQuery (parentNode, workingNode)
dataset=queryDataSet(sqlQuery, workingNode)
while(dataset is not empty)
{
 rowData=getNextRowData (dataset)
 workingTableTag=createNewTag()
 for (each column in the rowData)
 {
 columnTag=createNewTag()
 workingTableTag.appandChild(columnTag)
 }
}
ExtandPostOrderTravers (workingNode, workingTag)
parentTableTag.appandChild(workingTableTag)

 }
}

More over, in plan 3, all duplicated data in

Meetings table have duplicated data in Notices table.
Note that plan 2 and plan 4 have the same data file
size without any duplicated data in our example. At
this point, we can make decisions based on the

DWG2XML: GENERATING XML NESTED TREE STRUCTURE FROM DIRECTED WEIGHTED GRAPH

25

semantic meaning of the data. From Figure 5 and
Figure 7, we can see that Notices data can be
grouped under different nested trees. In this case, the
one which is more meaningful to the user is the one
that can be the best candidate to be selected.

3.6 XML data process

When we have a good plan, we can transform all
content of the relational database into XML
document according to the tree structure in the plan.
We extend the post order traversal algorithm using
recursion to tag table data in an XML file.

As shown in Table 1, we create a table tag for
each tuple of the data in the relation, and query the
dataset from its nested relation until we reach the
leaves. Then when we return to the upper level, we
attach the data to the tag as well as we close the tag
until we reach the root.

4 CONCLUSIONS

We have presented our DWG2XML approach that
can derive all possible nested XML structure plans
from a given directed graph in order to minimize the
XML file size and database access time. This
approach extends and completes previous work on
relational database to XML conversion. It improves
the performance of the conversion technique by the
ability of finding the smallest data file size nested
XML structure for a relational database. The
DWG2XML approach presented here has been
implemented in Java with JDBC driver for MSDE
database. It is capable of handling unary, one-to-
one, one-to-many, many-to-many and nary (n>2)
relationships. Using our approach, it is possible to
produce the desired XML schema and document
ranging from flat to nested structures.

REFERENCES

Fernandez M., Kadiyska Y., Suciu D. and Tan W.,
“SilkRoute: A Framework for Publishing Relational
Data in XML,” ACM Transactions on Database
Systems, Vol.27, No.4, pp.438-493, 2002.

Shanmugasundaram J., el al, “Efficiently Publishing
Relational Data as XML Documents,” The VLDB
Joural, Vol.10, pp.133-154, 2001.

Chaudhuri S., Kaushik R. and Naughton J., “On
Relational Support for XML Publishing: Beyond
Sorting and Tagging,” Proceedings of ACM SIGMOD
Conference on Management of Data, San Diego, CA,
June 2003.

Alhajj R., “Extracting the Extended Entity-Relationship
Model from a Legacy Relational Database,”
Information Systems, Vol.28, No.6, pp.597-618, 2003.

Wang C., Lo A., Alhajj R. and Barker K., “Converting
Legacy Relational Database into XML Database
through Reserve Engineering,” Proceedings of the
International Conference on Enterprise Information
Systems, Porto, Portugal, Apr. 2004.

Duta A., Barker K., and Alhajj R., “ConvRel:
Relationship Conversion to XML Nested Structures,”
Proceedings of the ACM Annual Symposium on
Applied Computing, Cyprus, Mar. 2004.

Lo A., Alhajj R. and Barker K., “Flexible User Interface
for Converting Relational Data into XML,”
Proceedings of the International Conference on
Flexible Query Answering Systems, Springer-Verlag,
Lyon, France, June 2004.

Lee D., Mani M. and Chu W.W., “Effective Schema
Conversions between XML and Relational Models,”
Proceedings of the European Conference on Artificial
Intelligence (ECAI), Knowledge Transformation
Workshop (ECAI-OT), Lyon, France, July 2002.

Lee D., Mani M., Chiu F. and Chu W.W., “NeT & CoT:
Translating Relational Schemas to XML Schemas
Using Semantic Constraints,” Proceedings. of ACM
International Conference on Information and
Knowledge Management, McLean, VA, Nov. 2002.

Lee D., Mani M., Chiu F., and Chu W.W., “Nesting-based
Relational-to-XML Schema Translation,” Proceedings
of the International Workshop on the Web and
Databases, Santa Barbara, CA, May 2001.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

26

