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Abstract: Artificial Neural Networks are bioinspired mathematical models that have been widely used to solve many 
complex problems. However, the training of a Neural Network is a difficult task since the traditional 
training algorithms may get trapped into local solutions easily. This problem is greater in Recurrent Neural 
Networks, where the traditional training algorithms sometimes provide unsuitable solutions. Some 
evolutionary techniques have also been used to improve the training stage, and to overcome such local 
solutions, but they have the disadvantage that the time taken to train the network is high. The objective of 
this work is to show that the use of some non-linear programming techniques is a good choice to train a 
Neural Network, since they may provide suitable solutions quickly. In the experimental section, we apply 
the models proposed to train an Elman Recurrent Neural Network in real-life Time Series Prediction 
problems. 

1 INTRODUCTION 

Artificial Neural Networks are bioinspired 
mathematical models that have been widely used to 
solve many complex problems, difficult to model 
because of their non-linearity, lack of information, 
or excessive difficulty. The most common neural 
network models used to solve these problems have 
mainly been feedforward networks (Haykin, 1999). 
There are many training algorithms for this kind of 
network and most are based on error propagation 
methods: for instance, backpropagation algorithms 
and similar ones. However, the disadvantage of 
these algorithms is that the search for the best 
solution is frequently trapped in a local optimum, 
therefore making it difficult for the network to work 
well.  

In the case of Recurrent Neural Networks (D.P. 
Mandic et al., 2001), there are not as many training 
algorithms as for feedforward ones. These 
algorithms (M. Hüsken et al., 2003; R.J. Williams et 
al., 1989-1990) also share the same disadvantage as 
those used to train feedforward networks in that they 
get trapped in local optimal solutions very easily. In 
fact, This problem is greater in recurrent neural 
networks. Some evolutionary techniques have been 

proposed as a good choice to train these kind of 
networks (Blanco et al., 2001; M.P. Cuéllar et al., 
2004), because they can overcome the local optimal 
solutions, but they have the drawback that the 
training stage takes too much time. 

In this work, we propose some non-linear 
programming algorithms to train Recurrent Neural 
Networks. These algorithms are the BFGS (C. Zhu 
et al., 1997; R.H. Byrd et al., 1995) and the 
Levenberg-Marquardt minimization methods. Both 
algorithms are related to the Gauss-Newton method, 
but the implementations used in this work may be 
used to solve different kind of problems, as we will 
show in section 3.  

Related to Neural Network training, the BFGS 
method has been used to train feedforward networks, 
being hybridized with the evolutionary Scatter 
Search algorithm (R. Martí et al., 2002), in order to 
improve the solutions during the evolutionary 
process, obtaining suitable results in function 
approximation problems. On the other hand, the 
Levenberg-Marquardt (LM) (D.W. Marquardt, 1963; 
J.J More, 1977) method is a widely known algorithm 
used to optimize Radial Basis Function Networks 
(R. Zemomi, 2003). Some implementations have 
adapted the LM algorithm to train feedforward 
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networks (M.T. Hagan et al., 1994). Other 
applications of both algorithms are ralated to solve 
minimization problems.  

In this work, we use the models proposed to train 
an Elman Recurrent Neural Network (ERNN) (D.P. 
Mandic et al., 2001) in real-life Time Series 
prediction problems. The reasons to choose an 
ERNN model are mainly related to the problem to 
solve:  

Time Series are, basically, a data chaining, 
indexed in time. Such data chaining often has some 
temporal properties, in the sense that the value of the 
Time Series at the current time depends on some 
unknown past values. The objective of Time Series 
Prediction is to model the Time Series, and then to 
predict the future values with minimum error. Many 
approaches have been used to model a Time Series, 
and to the date, it is still a great problem. Traditional 
techniques, basically statistical methods, are very 
limited, since the models used are mainly linear 
regressions, and the temporal properties of the time 
series are often non-linear ones. In recent works, 
there are many approaches to model a Time Series 
with non-linear models, and Neural Networks play a 
great role in this field. The use of RBF Networks is 
very common in Time Series Prediction (R. Zemomi 
et al., 2003), but they have the disadvantage that the 
analysis of the temporal properties must be done 
manually, therefore increasing the number of 
experiments. Recurrent Neural Networks is a 
suitable approach to model a Time Series, since the 
recurrence allows the network to learn the temporal 
properties that the input data have, and the analysis 
of the temporal properties is done automatically. 
Considering some models of Recurrent Networks, 
the ERNN has obtained the best experimental results 
in our work. 

 
This work is structured as follows: Section 2 

introduces the Elman Recurrent Neural Neural 
Network. In section 3, the non-linear programming 
algorithms proposed are exposed. Section 4 shows 
the experimenta results obtained. Finally, section 5 
discusses the conclusions obtained. 

2 ELMAN RECURRENT NEURAL 
NETWORKS 

An Elman recurrent neural network has three neuron 
layers: one is used for the input data, another is the 
hidden neuron layer, and the other is the output 
neuron layer. The network also has an additional 
neuron layer, called the state neuron layer. There are 
as many neurons in the state neuron layer as there 
are in the hidden layer. Recurrence is carried out 

from the hidden neurons to the state neurons so that 
the output of a hidden neuron at time t is also input 
to all hidden neurons at time t+1. This idea is 
illustrated in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 shows an example of an Elman recurrent 

neural network with two inputs, one output, and 
three hidden neurons. Therefore, the state neuron 
layer also has three neurons, corresponding to the 
values of the three hidden nodes at the previous 
time. The equations of the network dynamics are: 

 
(1) 

 
 

(2) 
 
 

(3) 
 

(4) 
 
where: 
 

• Y BkB(t) is the output of neuron k in the output 
layer, at time t. 

• Netout BkB(t) is the output of neuron k in the 
output layer, when the activation function has 
not yet been applied. 

• NethBkB(t) is the output of neuron k in the hidden 
layer, when the activation function has not yet 
been applied. 

• SBkB(t) is the output of neuron k in the hidden 
layer. 

• H is the number of neurons in the hidden layer. 
• I is the number of neurons in the input layer. 
• SBkB(t-1) is the state value, corresponding to the 

state neuron k, at time t. 
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Figure 1: Example of an Elman recurrent neural 
network with two intputs, three hidden neurons, and 

one output 
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• F(·) is the activation function of the neurons in 
the hidden layer. 

• G(·) is the activation function of the neurons in 
the output layer. 

• V Bij B is the weight of connection from neuron j in 
the input layer to neuron i in the hidden layer. 

• U Bij B is the weight of connection from neuron j in 
the state layer to neuron i in the hidden layer. 

• P Bij B is the weight of connection from neuron j in 
the hidden layer to neuron i in the output layer. 

• X BiB(t) is the network input i at time t. 
 

The traditional gradient-based training algorithm 
used to train this kind of network is the 
Backpropagation Through Time (BPTT) algorithm. 
The main drawback of this algorithm, as shown in 
section 1, is that the method gets trapped into local 
optimal solutions very easily.  

In the following section, the non-linear 
programming algorithms proposed in this work, and 
its application to Recurrent Neural Network training, 
are introduced. 

3 NON-LINEAR PROGRAMMING 
ALGORITHMS 

Before to explain the BFGS and the LM algorithms, 
an introduction to non-linear programming is shown. 

A non-linear program is a problem that can be 
considered as a minimization task with the following 
structure: 

 
  
 
 
 
 

(5) 
 
 
 
 
 

The function F is called objective function, x is a 
vector of  n variables to be optimized. The functions 
g BiB and hBjB are called constraint equations. The 
constraint equations remark some conditions that 
must be fulfilled for a set of variables in x. If the 
value m=0, then there are no conditions or 
dependencies in the variables in x, and the problem 
is called unconstrained. 
 
 There are many reasons to choose the BFGS and 
the LM algorithms in this work. These are: 
 

- They have been applied to optimize 
feedforward neural networks, obtaining good 
results. Therefore, it may be interesting to 
apply them to train recurrent networks, 
where the training stage is more difficult. 

- The versions of the algorithms implemented 
in this work may be applied to problems with 
different characteristics, as shown below. 

 
Depending on the problem to solve, it may be 

classified, considering the number of training data, 
into underdetermined, determined, and 
overdetermined problems. A problem is 
underdetermined when there are less training 
examples than variables to optimize; it is determined 
when there are as many training examples as 
variables to optimize, and overdetermined when 
there are more training examples than variables to 
optimize. The determined problems are not very 
common, so that in this work we only consider the 
underdetermined and the overdetermined problems. 

Furthermore, in some applications of Recurrent 
Neural Networks, it may be interesting to keep the 
weight values belonging not to ℜ, but to a valid 
interval in ℜ. An example of this situation is when 
the neural network must be implemented in 
hardware, and the number of bits to represent a 
weight is fixed. We can see this situation as a 
constrained situation, so that we can also classify the 
problems into constrained and unconstrained 
problems. 

Attending to the previous classifications, the 
BFGS and the LM algorithms proposed in this work 
may be applied to a concrete kind of problems, as 
shown in tables 1 and 2. 

 Unconstrain
ed problems 

Constrained 
problems 

Underdetermined 
problems 

NO NO 

Overdetermined 
problems 

YES NO 

   
Table 2: Problems solved by BFGS 

 
 

Unconstrain
ed problems 

Constrained 
problems 

Underdetermined 
problems 

YES YES 

Overdetermined 
problems 

YES YES 

 
As we can see, the applications of BFGS also 

include the problems solved by LM. However, in the 
experimental section, we show that the solutions 
provided by LM are much better than the ones 
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provided by BFGS for overdetermined 
unconstrained problems. 

 
Below, subsections 3.1 and 3.2 explain the BFGS 

and the LM algorithms, and their application to 
Recurrent Neural Network training. 

3.1 The BFGS algorithm 

The BFGS algorithm was firstly proposed in 1970 
by Broyden, Fletcher, Goldfarb and Shanno. Since 
then, several approaches to improve the algorithm, 
and also to apply it to a wider set of problems, have 
been proposed. In this work, we use an adaptation of 
this algorithm, called limited-memory bound-
constrained/unconstrained BFGS algorithm (L-
BFGS-B) (R. H. Byrd et al., 1995). The L-BFGS-B 
algorithm solves a problem that is considered as 
shown in equation 5, where the constraint equations 
are basically bound constraints, it is said: 

 
hBjB(x)= lBjB ≤xBjB ≤uBjB, j=1..n 

 
where lBjB and u BjB are the lower and upper bounds for 

the variable to optimize xBjB, respectively. The main 
scheme of the algorithm is shown below: 

 
0. At the beginning, a solution x Bk B, k=0, and the 

corresponding gradient for function F must 
be provided as input data. 

1. If the search has converged, stop. 
2. Find an initial local solution, by mean of 

calculating the Cauchy point. 
3. Compute a search direction, called dBk B. 
4. Perform a line search along d Bk B, subject to the 

bound constraints, in order to compute the 
step length λ BkB, and set x Bk+1B=x Bk B+λ BkB d Bk B. 

5. Compute ∇F(x Bk+1 B) 
6. Update the limited-memory matrices, if 

necessary. 
7. Set k= k+1, and go to Step 1. 
 
Firstly, the algorithm computes an initial solution 

and a search direction, dBk B. Then, the solution is 
modified according to d Bk B. The algorithm also apply a 
Quasi-Newton algorithm to approximate the Hessian 
matrix. In (C. Zhu et al., 1997; R.H. Byrd et al., 
1995), you can find an in-depth explanation about 
this algorithm.  

Now, the use of the L-BFGS-B algorithm to train 
an ERNN is explained. Firstly, an ERNN is 
considered as a non-linear program (equation 5). 
After that, we show how to calculate the gradient of 
the variables to be optimized. 

 

When training a neural network, the objective is 
to minimize the output error. One of the most 
common procedures used to do this, is to minimize 
the Mean Square Error (MSE) between the network 
output, and the desired output for the network. In the 
case of recurrent neural networks, the MSE must be 
minimized across the time, as equation 6 shows. 

 
 
 
 

(6) 
 
 
 
 
 

where w is a vector containing the network weights, 
T is the number of training samples in the time, O is 
the number of network outputs, d Bo B(t) is the desired 
output for neuron o at time t, and Y BoB(t) is the 
network output provided by neuron o at time t (see 
equation 4). According to the notation introduced in 
Section 2, the vector w is structured as follows: 

 
Thus, equation 5 may be rewritten as follows: 

 
 
 

(7) 
 
 
 
 

The area in brackets is optional, and it contains the 
bound constraints in constrained problems. 
 The gradient value for a variable wBrB, denoted q BrB, 
that must be provided to the algorithm, is calculated 
in the following way: 
 
 
 
 
 Now, a vector Q, with the gradient values for the 
variables in vector w, may be defined as follows: 
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 The gradient value for each variable in w, using 
the notation from Section 2, is calculated below: 
 

 
Where 1≤i≤I, 1≤j≤H, 1≤o≤O. Thus, the gradient 
vector Q may be rewritten, following the same order 
defined for the vector w, as follows: 

 
You can find a Fortran free source code of the L-
BFGS-B algorithm in the web site 
http://www.ece.northwestern.edu/~nocedal/lbfgsb.ht
ml. In this work, we have translated it to C language, 
and also to adapt such source code in order to train 
ERNN. 

3.2 The LM algorithm 

The basic LM algorithm was proposed by D.W. 
Marquardt in (D.W. Marquardt, 1963). Since then, 
there are many approaches to solve a non-linear 
program using the LM algorithm. 

The algorithm tries to fit n parameters x B1B...x BnB, in a 
non-linear problem. The initial assumption is that, 
sufficiently closed to the minimum of the function F 
to be minimized, F may be approximated by a 
quadratic form: 

 
 
 
 

where h is a n-dimensional vector, and H is the 
Hessian matrix. If the approximation is good, then 
the optimal values for w may be calculated. 
Otherwise, the algorithm iterates using the steepest 
descent method (S. Haykin, 1999) in order to 
improve the current solution. The main scheme of 
the algorithm is structured as follows: 

 

0. At the beginning, a solution x P

k
P, k=0, and a 

step-length parameter λ, must be provided as 
input data. 

1. Compute F(x P

k
P) 

2. Update the Hessian matrix, and calculate δx P

k
P 

3. Compute F(x P

k
P+δx P

k
P). 

4. If  (F(x P

k
P+δx P

k
P) ≥ F(x P

k
P)), increase λ by a factor 

of 10 
5. If  (F(x P

k
P+δx P

k
P) < F(x P

k
P)), then 

5.1. decrease λ by a factor of 10 
5.2. set xP

k+1
P= xP

k
P+δx 

6. Set k= k+1 
7. If the algorithm has converged, stop. 

Otherwise, go to step 1. 
 
The implementation used in this work solves an 

overdetermined set of non-linear equations by mean 
of a modification of the LM algorithm. You can find 
a good explanation of the implementation of this 
algorithm in (J.J. More, 1977).  

  
Now, the training process for ERNN, using the 

LM algorithm, is explained. The training of an 
Elman Recurrent Neural Network may be 
considered as the fitting of set of m non-linear 
equations, being m the number of training samples: 

 
 
(8) 
 
 

 Considering equation 8, m=T·O, where T is 
the number of training samples, and O is the number 
of network outputs; d Bo B(t) is the desired output for 
neuron o at time t, and Y Bo B(t) is the network output 
provided by neuron o at time t. 

 Being considered an Elman Recurrent Neural 
Network as a set of m equations as shown in (8), the 
LM algorithm minimizes the sum of the squares for 
such m equations. Thus, equation 5 may be rewritten 
as follows: 

 
 
(9) 
 
 

 
 Thus, equation 9 shows the function to be 

minimized, and the LM algorithm may be applied 
directly. 

 There is an important advantage in the LM 
algorithm, being compared with BFGS. To explain 
it, we must take a look at equations 7 and 9. In (7), 
the function to minimize is the MSE across the time. 
Please note that the minimization is carried out for 
the sum of the errors in output values. On the other 
hand, equation (9) minimizes the errors for each 

⎩
⎨
⎧

=
=

−=
1..Oo

1..Tt
(t);d(t)Yt),w(F ooo

}t)),w((F{min
T

1t

O

1o

2
o∑∑

= =

xHx
2

1
xhγF +−≈

∑

∑

∑

∑

=

=

=

=

−=

=
∂

∂

−=
∂

∂

−=
∂

∂

O

1o
ooojjj

T

1t
ji

ji

T

1t
jk

jk

T

1t
joo

oj

(t))d(t)(YP(t))(nethf'
T

2
(t))δ(S

(t)))(S(t)(X
V

t),wMSE(

(t)))(S1)(tS
U

t),wMSE(

(t)(t))Sd(t)(Y
T

2

P

t),wMSE(

δ

δ

)
dP

t),wMSE(
..

dU

t),wMSE(
..

dV

t),wMSE(
(Q

okjkji

∂∂∂
=

AN APPLICATION OF NON-LINEAR PROGRAMMING TO TRAIN RECURRENT NEURAL NETWORKS IN TIME
SERIES PREDICTION PROBLEMS

39



 

output separately. This fact allows the LM algorithm 
to improve the minimization for each output 
individually, meanwhile the BFGS algorithm 
minimizes the global error for the whole set of 
outputs. Because of this, the LM algorithm may find 
better solutions as shown in the experimental 
section.  

4 EXPERIMENTAL RESULTS 

In this section, we show an example of the 
application of the model exposed in the previous 
section, to time series prediction problems. A time 
series is a sequence of values or observations, taken 
in time. The purpose of time series prediction is to 
predict the next values of such observations. In this 
work, we apply the model to two time series, taken 
from the web page www.economagic.com:  

 
- Series1: ECB reference exchange rate, UK 

pound sterling-Euro, 215 pm (C.E.T.) UK Pound 
Sterling. Total values: 65, taken monthly from 1999 
to 2004-May. We predict the 5 last values, 
corresponding to the monthd of 2004. 

- Series2: Total Population of the U.S.; 
Thousands. Percentage variation from 1953 until 
2004-March. Total values: 615, taken monthly from 
1953. We predict the 3 last values, corresponding to 
the months of 2004. 

 
Figures 2-3 show the values of the time series. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The parameters to be used in the algorithms are 
the following: 

- Number of Input Neurons: 1 
- Number of Hidden Neurons: 8 
- Number of Output Neurons: 1 
- Stopping criteria: To reach 500 iterations 
- Initial value for λ: 0.0001 
- Weight interval (constrained BFGS): [-0.5, 

0.5] 
 

Considering the Network exposed in Section 2, 
the number of variables to be optimized is I·H + H·H 
+ O·H, where I is the number of input units, H is the 
number of hidden units, and O is the number of 
output units. Therefore, according to the previous 
specifications, the number of variables to optimize 
in each problem is 80. Thus, the problems to solve 
may be classified (following the criteria exposed in 
section 3), into underdetermined, and 
overdetermined. As the number of training data are 
60 for Series1, and 613 for Series2, then Series1 is 
classified as an underdetermined problem (LM 
cannot be applied in this problem, in consequence), 
and Series2 as an overdetermined problem. 

  
We make 30 experiments for each algorithm in 

each Time Series. Tables 3 and 4 shows the results 
obtained. Column 1 means the algorithm. Column 2 
exposes the kind of solution (average, best or worse 
solution). Finally, columns 3, 4 and 5 shows the 
traning and test Mean Square Error of the solution, 
and the time taken to obtain it. The best solutions 
over the whole set of algorithms are underlined 

 
Algorithm Solution Training 

MSE 
Test MSE Time (in 

seconds) 
Best 6.7291e-04 8.0037e-04 0.23 

Average 8.0126e-04 9.6046e-04 0.27 

BFGS 
(Constrai-

ned) Worse 1.3150e-03 1.5769e-03 0.14 

Best U9.4695e-05U U1.0391e-04U 0.71 

Average 6.0206
e-04 

6.9697e-04 0.65 

BFGS(unc) 

Worse 4.9304e-02 5.8125e-02 0.30 

Best 1.6103e-04 1.7559e-04 1.09 

Average 1.2020e-03 1.5151e-03 1.00 

Genetic 
Algorithm 

Worse 6.9654e-03 8.1305e-03 0.97 

Best 6.2092e-02 7.7774e-02 1.12 

Average 8.2314e-02 1.0431e-01 1.03 

BPTT 

Worse 9.8027e-02 1.2536e-01 0.95 

 
 
 
 
 

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Figure 2: Values of Series1 Time Series 

0

0,5

1

1,5

2

1 50 99 148 197 246 295 344 393 442 491 540 589

Figure 3: Values of Series2 Time Series 

Table 3: Results for Series1 

ICEIS 2005 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

40



 

Algorithm Solution Training 
MSE 

Test MSE Time (in 
seconds) 

Best 4.0093e-03 4.1564e-03 1.31 

Average 1.8302e-02 1.8788e-02 1.25 

BFGS 
constrained 

Worse 4.8057e-02 4.9673e-02 1.14 

Best 1.2444e-04 1.2707e-04 1.40 

Average 1.0259e-03 1.0462e-03 1.36 

BFGS 
Unconstrai

-ned Worse 5.3909e-02 5.4949e-02 1.27 

Best U8.5914e-05U U8.8928e-05U 3.05 

Average 2.2811e-03 2.3152e-03 2.82 

LM 

Worse 1.3597e-02 1.4481e-02 2.58 

Best 3.6713e-04 3.8023e-04 2.90 

Average 4.7275e-03 4.8265e-03 2.79 

Genetic 
Algorithm 

Worse 3.7482e-02 3.9969e-02 2.76 

Best 4.7391e-02 4.9600e-02 1.41 

Average 6.3998e-02 6.6973e-02 1.36 

BPTT 

Worse 8.8101e-02 9.1760e-02 1.33 

 
As we can see in tables 3-4, the non-linear 

programming algorithms obtain the best results. We 
also can see the difference in the constrained and the 
unconstrained BFGS: The unconstrained BFGS 
obtain better solutions, since the constrained can 
only take values in the bound intervals for the 
weights. For this reason, it is better to choose the 
unconstrained version than the unconstrained one, 
unless that bounds over the network weights are 
required. 

On the other hand, for the overdetermined 
problem, we can observe that the LM algorithm 
reach better solutions than BFGS, as we introduced 
in section 3.2. The LM algorithm can get more 
information about the problem because it tries to 
optimize each output value for each output neuron, 
since the BFGS only tries to minimize the output 
error for the whole set of output neurons (see 
equations 7 and 9). 

In tables 3-4, we also can see that the time taken 
to reach the solutions by the BFGS algorithm, is 
smaller than the time taken by the other algorithms, 
and it obtains suitable solutions. On the other hand, 
the LM algorithm spends more time than the rest of 
algorithms, but it can also obtain better solutions. 

 
Below, figures 4-5 show the adjustment and the 

prediction carried out by the best solutions in tables 
3 and 4 (the BFGS and the LM algorithm, 
respectively). Also, tables 5-6 expose the values of 
the real data and the prediction given by the 
solutions. Column 1 shows the real data, and 
Column 2 exposes the prediction given by the 
Network trained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REAL DATA PREDICTION 
0,69215 0,702707 
0,67690 0,690901 
0,67124 0,674261 
0,66533 0,668534 
0,67157 0,672251 

 

REAL DATA PREDICTION 
0,975 0,972407 
0,974 0,969408 
0,973 0,969410 

 
Now, a statistical t-test, with 0.05 of confidence 

level, is carried out in order to compare the BFGS 
and the LM algorithms. Tables 7-8 show the results 
of the t-test for the problems Series1 and Series2, 
respectively. We use (+) to mark the cells where the 
algorithm of Column x is better than the algorithm in 
Row y, (-) means that the algorithm of Column x is 
worse than the algorithm in Row y, and no sign 
means that there is no statistical difference between 
the models. 

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

1 7 13 19 25 31 37 43 49 55 61

Series1

Adjustment

Figure 4: Real data and Adjustment of the best solution 
for Series1 

Table 5: Values of Prediction for Series1 

Table 6: Values of Prediction for Series2 

0

0,5

1

1,5

2

1 73 145 217 289 361 433 505 577

Series2

Adjustment

Figure 5: Real data and adjustment of the best 
solution for Series2 

Table 4: Results for Series1 
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 BFGS (Unconstrained) 

BFGS (Constrained) 0.3118 

 

BFGS 
(Unconstr.) 

0.4271 

LM 0.3251 0.3251 
 BFGS 

(Constrained) 
BFGS 

(Unconstr.) 
 

As shown in Tables 5-6, the statistical t-test has 
concluded that there is no statistical difference in the 
non-linear programming algorithms. However, 
tables 3-4 expose that the results using an algorithm 
may provide better results. What we recommend to 
solve a problem, is to make a set of experiments 
with each non-linear programming algorithm, and 
then choose the one that better results provide, in 
average. 

5 CONCLUSIONS 

In this work, we have introduced some non-linear 
programming algorithms to train Recurrent Neural 
Networks: the BFGS and the LM algorithms. After 
considering the training of an Elman Recurrent 
Neural Network as a non-linear programming 
problem, the models have been applied to some 
Time Series prediction problems in the experimental 
section, obtaining suitable results. The non-linear 
programming algorithms have improved the 
solutions provided by the traditional training 
algorithm for ERNN. They also have obtained better 
results than other recent techniques, such Genetic 
Algorithms, and those solutions have been reached 
in less time than the GA and the traditional 
algorithms. In addition, it also may be used when 
bound constraints are a requirement over the 
network weights, meanwhile this situation cannot be 
solved using traditional training algorithms. In 
conclusion, the use of non-linear programming 
techniques may be a good tool to be considered 
when training Recurrent Neural Networks. 
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