
SECURE CONCURRENCY CONTROL ALGORITHM FOR
MULTILEVEL SECURE DISTRIBUTED DATABASE SYSTEMS

Navdeep Kaur , Rajwinder Singh
Department of Electronics and Computer Engg., Indian Institute of TechnologyRoorkree, Roorkee, India

Hardeep Kaur Sidhu
Department of Electronics and Communication Engg.,Baba Ishar Singh Polytechnic,Kot-Ise khan,Moga,,India

Keywords: Distributed database, Multilevel secure database system, Concurrency control

Abstract: Majority of the research in multilevel secure database management systems (MLS/DBMS) focuses
primarily on centralized database systems. However, with the demand for higher performance and higher
availability, database systems have moved from centralized to distributed architectures, and the research in
multilevel secure distributed database management systems (MLS/DDBMS) is gaining more and more
prominence. Concurrency control is an integral part of database systems. Secure concurrency control
algorithms proposed in literature achieve correctness and security at the cost of declined performance of
high security level transactions. These algorithms infringe the fairness in processing transactions at different
security levels. Though the performance of different concurrency control algorithms have been explored
extensively for centralized multilevel secure database management systems but to the best of author’s
knowledge the relative performance of transactions at different security levels using secure concurrency
control algorithm for MLS/DDBMS has not been reported yet. To fill this gap, this paper presents a detailed
simulation model of a distributed database system and investigates the performance price paid for
maintaining security with concurrency control in a distributed database system. The paper investigates the
relative performance of transactions at different security levels.

1 INTRODUCTION

In applications such as military, data and
transactions (users) are classified into different
levels of security. For these applications security can
be implemented by using a database system that can
control the access to data based on the security level
of users submitting the transactions and the security
level of data. This is in-contrast to the traditional
database systems where all data in the database and
all users who access it belong to the same security
level. Database system that can store and manage
data with different classifications in a single system
is called a multilevel secure database (MLS/DB)
system.

In a Multilevel secure database system
(centralized or distributed) a security level is
assigned to each transaction and data. A security
level for a transaction represents its clearance level
and the security level for a data represents its

classification level. A multilevel secure database
management system (MLS/DBMS) restricts
database operations based on the security levels.

Concurrency control is an integral part of the
database systems. It is used to manage the
concurrent execution of operations by different
transactions on the same data item such that
consistency is maintained. One of the most
important issues for concurrency control in MLS
database system is the covert channel problem
(Lampson, 1973). It naturally comes due to the
contention for the shared data items by transactions
executing at different security levels. The most
common instances of totally ordered security levels
are the Top-Secret(TS), Secret(S), Confidential(C),
and Unclassified(U) security levels encountered in
the military and government sectors. In this paper,
we use two security levels: high and low. A primary
concern in multilevel security is information
leakage, by a high security level transaction-to-
transaction executing at a low security level. Covert

267
Kaur N., Singh R. and Kaur Sidhu H. (2005).
SECURE CONCURRENCY CONTROL ALGORITHM FOR MULTILEVEL SECURE DISTRIBUTED DATABASE SYSTEMS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 267-272
DOI: 10.5220/0002516002670272
Copyright c© SciTePress

channels are paths not normally meant for
information flow. In multilevel secure databases, a
low security level transaction can be delayed or
aborted by a high security level transaction due to
shared data access. Thus, by delaying low security
level transactions in a predetermined manner, high
security level information can be indirectly
transferred to the lower security level. This is called
a covert channel. Direct leakage can be prevented by
mandatory access control policies such as the Bell-
LaPadula (BL) model (Bell & LaPadula, 1976) but
handling of covert channel needs modifications in
conventional concurrency control schemes such as
two-phase locking (2PL) and timestamp ordering
(TO).

Most of the research efforts in the area of secure
concurrency control are focused on centralized
databases. Several approaches have been proposed
for centralized secure concurrency control in
MLS/DBMSs. Most of these are either extension of
the 2PL protocol or of timestamp-based protocols
(Atluri, Jajodia & Bertino, 1997). The performance
of secure concurrency control algorithms has also
been studied (Son & David, 1994 and Sohn &
Moon, 2000.). However, to the best of author’s
knowledge the performance study of MLS/DDBS
has not been yet reported.

The problem of covert channel makes secure
concurrency control algorithms more complex than
conventional concurrency control algorithms. In this
paper, we concern ourselves with concurrency
control algorithm that has to satisfy both security
and consistency requirements and compare the
performance of secure 2PL with non-secure 2PL for
secure distributed database via simulation.

The remainder of the paper is organized as
follows. The next section presents MLS distributed
database model. Section 3 presents the secure two-
phase locking concurrency control algorithm that
implemented in our simulation model. Section 4
gives the details of the simulation model. The results
of simulation experiments are discussed in Section
5. Section 6 concludes the paper.

2 MLS DISTRIBUTED DATABASE
MODEL

We use the MLS distributed database model given in
(Ray, Mancini, Jajodia & Bertino, 2000). It consists
of a set N of sites, where each site N є N is an MLS
database. Each site has an independent processor
connected via secure (trusted) communication links
to other sites. Thus no communication between two
sites is subject to eavesdropping, masquerading,
reply or integrity violations.

The MLS distributed database is modeled as a
quadruple < D, T, S, L >, where D is the set of data
items, T is the set of distributed transactions, S is the
partially ordered set of security levels with an
ordering relation ≤, and L is a mapping from D ∪ T
to S. Security level Si is said to dominate security
level Sj if Sj ≤ Si. For every x є D, L(x) є S, and for
every T є T, L(T) є S. Every data object x, as well as
every distributed transaction T, has a security level
associated with it.

 Each MLS database N is also mapped to an
ordered pair of security classes Lmin(N) and Lmax(N).
Where Lmin(N), Lmax(N) є S, and Lmin(N) ≤ Lmax(N).
In otherwords, every MLS database in the
distributed database has a range of security levels
associated with it. For every data item x stored in an
MLS database N, Lmin(N) ≤ L(x) ≤ Lmax(N) Similarly,
for every transaction T executed at N, Lmin(N) ≤ L(T)
≤ Lmax(N). A site Ni is allowed to communicate with
another site Nj only if Lmax(N)i = Lmax(N)j. The
security policy used is based on the Bell-LaPadula
model and enforces the following restrictions:

Simple Security Property: A transaction
T(subject) is allowed to read a data item(object) x
only if L(x) ≤ L (T).

Restricted *- Property: A transaction T is
allowed to write a data item x only if L (x) = L (T).

Thus, a transaction can read objects at its level or
below, but it can write objects only at its level. In
addition to these two requirements, a secure system
must guard against illegal information flows through
covert channels.

3 SECURE TWO PHASE
LOCKING PROTOCOL

Two-phase locking is the most widely used
concurrency control algorithm in database systems
for synchronizing accesses to shared data and has
been realized in most of the commercial systems
(Bernstein, Hadzilacos, & Goodman, 1987 and Mohan,
Lindsay, & Obermarck, 1986). As the name indicates,
two-phase locking (2PL) consists of two phases. The
first phase is called expanding phase during which
new locks can be acquired but none can be released.
The second phase is called shrinking phase during
which locks held by a transaction are released but no
new locks can be acquired. For strict execution,
strict two-phase locking additionally requires that all
locks held by a transaction be released only after the
transaction commits or aborts (Ceri & Pelagatti, 1984).
If a transaction Ti is holding a lock on shared data
item x, no other transaction Tj can get access to x if
their operation on x conflict. As a result, the
isolation of transactions is enforced.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

268

In 2PL, the current lock holder is never aborted
due to a conflicting request from another transaction.
The new request is blocked until the current holders
release their locks. Therefore, two-phase locking is
not suitable for MLS databases because a low
security level transaction can be delayed by a high
security level transaction due to shared data access.
Thus, by delaying low security level transactions,
high security level transaction can indirectly transfer
the information to lower security level transaction by
establishing a timing covert channel. If low security
level transactions are somehow allowed to continue
with there execution in spite of the conflict with high
security level transactions, covert channel can be
prevented.

Let Tl denotes the low security level transaction
and Th denotes the high security level transaction,
i.e., L(Tl) < L(Th). x and y are data items with low
and high security level respectively. Read down is
the only conflicting operation between Tl and Th that
can create covert channel

The security model allows a transaction (or sub-
transaction) to issue read-equal, read-down and
write-equal operations. This is sufficient to prove
that security is not violated through data access
(Sandhu, 1990).

Table 1 shows all permitted operations in MLS
database system.

Table 1: Permitted Operations in MLS Databases
 Data Items
Transactions

L(l)

L(h)

L(Th) r[x] r[y], w[y]
L(Tl) w[x] ,r[x] -

Based upon these permitted operation following
conflicts may occur:
1. (Read-down conflict among different levels):
Read-down conflict occurs between L(Th)'s read
operation, r[x], and L(Tl)'s write operation, w[x].
2. (Read-write conflict at same level): Read-write
conflict occurs between L(Tl)i's read operation, r[x],
and L(Tl)j's write operation, w[x]. Where L(Tl)i ,
L(Tl)j and x are at the same security level.
3. (Write-write conflict at same level): Write-write
conflict occurs between L(Tl)i's write operation,
w[x], and L(Tl)j's write operation, w[x]. Where L(Tl)i
, L(Tl)j and x are at the same security level.

To close all covert channels, read-down conflict
is the only case that needs to be treated differently

from the conventional conflict in MLS database
systems.

In this paper we extend the two phase locking
high priority (2PL-HP) algorithm given in (Abbott &
Molina., 1992) for distributed databases and study the
performance of secure distributed 2PL. The rules
according to which the algorithm manages its locks
and operations are as follows:

 Every transaction in S2PL must obtain a read
lock before reading a data item and a write lock
before writing a data item. A transaction cannot
request additional locks once it has issued an unlock
action.

 A transaction holds on to all its locks (read or
write) until it completes.

A high security level transaction must release its
read lock on a low data item when a low security
level transaction requests a write lock on the same
data item and the aborted high security level
transaction is restarted after some delay.

4 SIMULATION MODEL

To evaluate the performance of the concurrency
control algorithms, we developed a detailed
simulation model of MLS distributed database
model. The model consists of MLS database that is
distributed, in a non-replicated manner, over N sites
connected by a network. Each site in the model has
six components: a source which generates
transactions workload of the system; database which
models the data and its organization; a transaction
manager which models the execution behavior of the
transaction; a concurrency control manager which
implements the concurrency control algorithm; a
resource manager which models the physical
resources (CPU and I/O); and a sink which collects
statistics on the completed transactions of the site. In
addition to these per site components, the model also
has a network manager which models behavior of
the communications network. Figure 1 shows
detailed view of these components and their key
interaction.

Source: The source is responsible for generating
the workload for each data site. Transactions are
generated as a Poisson stream with mean equal to
ArrivalRate. Each transaction in the system is

SECURE CONCURRENCY CONTROL ALGORITHM FOR MULTILEVEL SECURE DISTRIBUTED DATABASE
SYSTEMS

269

Figure 1: Simulation model of the DDBMS

distinguished by a globally unique transaction id.
The id of a transaction is made up of two parts: a
transaction number, which is unique at the
originating site of the transaction and the id of the
originating site, which is unique in the system. Each
transaction has an associated security clearance
level. A transaction is equally likely to belong to any
of the ClearLevel security clearance levels. We
assume that the clearance level remains constant
throughout the life of transaction inside the system.

Database Model: The database is modeled as a
collection of DBSize pages. These pages have been
assigned ClassLevels and are uniformly distributed
in a non-replicated fashion across all the NumSites
sites. The database is equally partitioned into
ClassLevels security classification levels. Table 2
summarizes the parameters of simulation model.

Transaction Manager: For each distributed
transaction; there is one process, called the master or
coordinator that executes at the originating site of
the transaction and a set of other processes, called
cohort that execute at the various sites where the
required data pages reside. The number of pages to
be accessed by the transaction is determined by the
parameter TransSize.If there exists any local data in
the access list of the transaction, one cohort will be
executed locally. When a cohort completes its data
access and processing requirements, it waits for the
master process to initiate two-phase commit. The
master process commits a transaction only if all
cohorts of the transaction are ready to commit (all
cohorts are voted yes); otherwise it aborts and
restarts the transaction after a delay and makes the
same data accesses as before.

Resource Manager: The resource manager
manages the physical resources of each site. The
physical resources at each site consist of NumCPUs
processors and NumDisks disks. There is a single
common queue for the processors whereas each of

the disks has its own queue. All queues are
processed in an FCFS order except that the message
processing is given higher priority than data
processing at the CPUs. The PageCPU and
PageDisk parameters capture the CPU and disk
processing times per data page, respectively.

Concurrency Control Manager: It is
responsible for handling concurrency control
requests made by the transaction manager, including
read and write access requests, requests to get
permission to commit a transaction, and several
types of master and cohort management requests to
initialize and terminate master and cohort processes.
Concurrency Control Manager uses strict two-phase
locking (2PL) protocol. We have implemented non-
secure 2PL and secure 2PL concurrency control
managers.

Table 2: Simulation model parameters and values

Parameter Meaning Value
NumSites
DBSize
ClassLevels

Number of sites in the database
Number of pages in the database
Number of Classification Levels

8
4000
2

ArrivalRate
ClearLevel
TransSize
WriteProb

Transaction arrival rate / site
Number of Clearance Levels
Average transaction size
Page write probability

Varies
2
4
0.2

NumCPUs
NumDisks
PageCPU
PageDisk
MsgCPU

Number of processors per site
Number of disks per site
CPU page processing time
Disk page access time
Message send / receive time

2
4
5ms
20ms
5ms

Network Manager: We assumed a reliable

system, in which no site failures or communication
network failures occur. The communication network
is simply modeled as a switch that routes messages
without any delay since we assume a local area
network that has high bandwidth. However, the CPU

 Message Messag e
 Received Send

 Service Resource Service Resource
 Done Request Done Re quest

 CC Request

 CC Reply

 Execute Transaction
Transaction Done

Sink
Collect Transaction

Source
Create Transaction

CC Manager
Access Request
Commit

Blocked Queue

Transaction Manager
Load Master /Cohort
Lock granted
Unlocked
Read/Write Page
Commit
Abort

Resource Manager

 CPU Disks

Trusted
Network
Manager

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

270

overheads of message transfer, message transfer are
taken into account at both the sending and the
receiving sites. This means that there are two classes
of CPU requests - local data processing requests and
message processing requests. We do not make any
distinction, however, between these different types
of requests and only ensure that all requests are
served in priority order. The CPU overheads for
message transfers are captured by the MsgCPU
parameter.

Sink: The sink module receives both completed
and aborted transactions from transaction manager.
It collects statistics on these transactions of the site.

5 EXPERIMENTS AND RESULTS

In this section, we present the performance results of
our simulation experiments. The aim of the
experiments was to obtain a measure of the
performance price that needs to be paid to provide
security in a distributed database system. This price
was measured as a comparison between the
throughput of transactions of non-secure 2PL and
that of secure 2PL at two security levels, (i.e., high
and low). The throughput is the number of
transactions committed per second.

5.1 Experiment 1: Performance
under Resource and Data
Contention

The workload and system parameter settings taken
for this experiment ensure that there are both data
contention (DC) and resource contention (RC) in the
system. The parameter settings used for this
experiment are shown in Table 2. There are two
security levels (classification levels), high and low.
Correspondingly, there are two transaction security
levels (clearance levels).

Graph 1 shows the transaction throughput as a
function of the transaction arrival rate per site. It can
be seen that the throughput of both concurrency
control algorithms initially increases with the
increase in arrival rate then decreases when arrival
rate becomes more than 5. However the overall
throughput of secure 2PL is always less than non-
secure 2PL.We also observes that the throughput of
high security level transactions is lower than that of
low security level transactions as arrival rate
increases. This is because higher priority is given to
low security level transaction. The high security
level transaction is aborted and restarted after some
delay whenever a data conflicts occur between a

high security level transaction and low security level
transaction.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10
Arrival Rate

Th
ro

ug
hp

ut

Non secure
Secure(overall)
Secure(Low)
Secure(High)

Graph 1: Throughput Vs Arrival Rate (RC+DC)

5.2 Experiment 2: Performance
under Pure Data Contention

The goal of our next experiment was to isolate the
impact of data contention (DC) on the performance
of the concurrency control algorithms. For this
experiment, the physical resources (CPUs and disks)
were made “infinite”, i.e., there is no queuing for
these resources (Agrawal, Carey & Livny, 1987). The
other parameter values are the same as used in
Experiment 1.

Graph 2 shows the transaction throughput as a
function of the transactions arrival rate per site. With
infinite physical resources, the throughput should be
a non-decreasing function of arrival rate in the
absence of data contention. However, for a given
database size, the probability of data conflicts
increases as arrival rate increases. The initial
increase is due to the fact that there is no resource
contention. In this experiment the throughput is
limited only by data contention and transaction
response times are typically smaller than that of
under RC+DC. We again observed that the
throughput of a secure algorithm is less than that of
non-secure algorithms for all arrival rates. In
addition, the performance of high security level
transaction is significantly lower than that of low
security level transaction at high arrival rate.

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9 10

Arrival Rate

Th
ro

ug
hp

ut

Non-Secure Secure(Overall)

Secure(Low) Secure(High)

Graph 2: Throughput Vs Arrival Rate (DC)

SECURE CONCURRENCY CONTROL ALGORITHM FOR MULTILEVEL SECURE DISTRIBUTED DATABASE
SYSTEMS

271

6 CONCLUSION

In this paper, we made a preliminary study of the
performance price paid for ensuring the covert
channel free security in a multilevel secure
distributed database system. Using a detailed
simulation model of a distributed database system,
we studied the performance of two- level (High and
Low) secure concurrency control algorithm against
an equivalent non-secure concurrency control
algorithm. Within secure concurrency control
algorithm, our experiment show that the
performance of high security level transaction is
significantly worst than that of the low security level
transaction, highlighting the price that has to be paid
for ensuring that there are no covert channels. In our
future work, we plan to investigate the schemes by
which the performance of high security level
transactions can be improved without compromising
security.

REFERENCES

Bell, D.E., & LaPadula, L.J., 1976. Secure computer
systems: unified exposition and multics interpretation.
The MITRE Corp.

Atluri, V., Jajodia, S., & Bertino, E., 1997. Transaction
processing in multilevel secure databases using
kernelized architecture: challenges and solutions,
IEEE Transaction on Knowledge and Data
Engineering, vol. 9, no. 5.

Son, S. H., & David, R, 1994. Design and analysis of a
secure two-phase locking protocol. In 18th Int'l
Computer Software and Applications Conference,
374-379, IEEE Computer Society Press

Sohn, Y., & Moon, S., 2000. Verified order-based secure
concurrency controller in multilevel secure database
management system, IEICE Transaction of
Information & System, vol. E83-D, no.5.

Ray, I., Mancini, L. V , Jajodia S., & Bertino, E., 2000.
ASEP: A secure and flexible commit protocol for
MLS distributed database systems, IEEE Transactions
on Knowledge and Data Engineering, vol. 12, no. 6.

Abbott, R. K. & Garcia-Molina, H., 1992. Scheduling
real-time transactions: a performance evaluation, ACM
Transactions on Database Systems, vol. 17, no. 3,
513-560.

Bernstein P., Hadzilacos, V. & Goodman, N., 1987.
Concurrency control and recovery in database
Systems, Addison Wesley Publishing Company.

Mohan, C., Lindsay, B., & Obermarck, R., 1986.
Transaction management in the r*distributed database
management system, ACM Transactions on Database
Systems.

Ceri, S., & Pelagatti, G., 1984. Distributed databases
principles and systems, McGraw-Hill, New York.

Lampson, B.W., 1973. A note on the confinement
problem. In Communications of the ACM, vol. 16, no.
10, 613-

615, ACM Press.
Sandhu, R., 1990. Mandatory controls for database

integrity. In DATABASE SECURITY III: Status And
Prospects, 143-150.

Agrawal, R., Carey, M. J., & Livny, M., 1987.
Concurrency control performance modeling:
alternatives and implications. ACM Transactions on
Database Systems.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

272

