
JDSI: A SOFTWARE INTEGRATION STYLE FOR
INTEGRATING MS-WINDOWS SOFTWARE APPLICATIONS IN

A JAVA-BASED DISTRIBUTED SYSTEM*

Jim-Min Lin, Zeng-Wei Hong, Guo-Ming Fang
Department of Information Engineering and Computer Science, Feng Chia University,

Taichung City 40724, Taiwan, ROC

Keywords: COTS software reuse, Software integration, Java-based distributed system, Architecture style

Abstract: Developing software systems by integrating the existing applications/systems over the network is becoming
mature and practical. Microsoft Windows operating systems today support a huge number of software
applications. It may accelerate the construction of components, if these commercial software applications
could be transformed to software components. This paper proposes an architectural style to support a 3-
phases process for migrating MS-Windows applications towards a distributed system using Java
technologies. This style is aimed to provide a solution with clear documentation and sufficient information
that is helpful to a software developer for rapidly integration of MS-windows applications. In final, an
example parking lot management system that assembles two MS-Windows applications was developed in
this work to demonstrate the usage of this style.

1 INTRODUCTION

Distributed computing has been an important trend
for developing software systems. Client/server
programming, distributed object systems and
Internet/WWW are distributed computing
technologies enabling a software system developed
by integrating different software components across
the boundaries of the network, operating systems,
and languages. The research on the integration of
distributed commercial off-the-shelf (COTS)
software applications is becoming mature and
practical. One of the important features of reusing
COTS software is that software developers can
rapidly integrate the well-established functionality in
the new system rather than developing one from
scratch. There have been a large number of COTS
software applications running on a variety of
Microsoft operating systems. It would facilitate the
software component construction, if the software
developers could utilize the functions of an existing
MS-Windows application.

Nowadays Java is already a popular distributed
computing paradigm widely adopted over industries,
marketplace, and the Internet. An important feature
of a Java program is that it can be deployed on
heterogeneous OSs and platforms. It would be

significant to assemble heterogeneous software
components including diverse MS-Windows
software applications using Java technologies. On
the achievement of the above goal, a lot of Java-
based services could be easily developed with the
existing MS-Windows applications. Moreover, the
diverse legacy applications under Microsoft OSs
could be reused and included into a new Java-based
software system.

In this study, we found it the major difficulty to
obtain the source code and technical support from
various vendors when reusing MS-Windows
software applications. Therefore, it would be a key
issue to overcome the incompatibility between MS-
Windows application’s operational interface and
Java application’s programmable interface.

Therefore, an architectural style named as Java-
based Distributed Software Integration (JDSI) in this
paper provides a migration process consisted of a
bottom-up three phases: encapsulation, gluing, and
interfacing. We firstly construct a server-side Java
object by wrapping MS-Windows application(s) in
the encapsulation phase. In this phase, a software
wrapper will be used to overcome interface
incompatibility. Then in the gluing phase, a
coordinator program is used to coordinate the server-
side wrapped objects and to integrate them into a
client-server system. Finally, in the interfacing

* This research was partly supported by National Science
Council, Taiwan, ROC under Grant NSC92-2213-E-035-044.
449Lin J., Hong Z. and Fang G. (2005).
JDSI: A SOFTWARE INTEGRATION STYLE FOR INTEGRATING MS-WINDOWS SOFTWARE APPLICATIONS IN A JAVA-BASED DISTRIBUTED
SYSTEM.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 449-452
DOI: 10.5220/0002518904490452
Copyright c© SciTePress

phase, we refer to the Model-View-Controller
(MVC) pattern (Schmidt 1999) to construct the user-
interactive system for the client-user’s manipulation
in the integrated software system.

By referring to the JDSI style, lots of valuable
information, like design issue-solution pairs,
participants’ specification, and implementation
strategy could be obtained to create applications
with similar problem issues. To demonstrate the
usage of the proposed style, a graphic parking-lot
system that reuses and integrates MS-Windows
software applications will be reported in this paper.

2 RELATED WORKS

Many researches have proposed the means to
migrate the existing applications to a distributed
system. However, most of them focused the source-
available legacy applications.

De Lucia et al. (De Lucia 1997, Cimitile 1998,
Canfora 1998, Aversano 2001) proposed a six-step
process to decomposing the existing source code of
COBOL systems into user interface component,
application logic, and database. These components
could be integrated into a Web-based information
system (Aversano 2001). Serrano et al. (Serrano
2002) encompassed data mining and evolutionary
migration techniques into reengineering a legacy
program. They also proposed a feasible
reengineering methodology to migrating non-object-
oriented systems into the CORBA platform .

The main difficulty raised in De Lucia’s work is
how to efficiently decompose an existing system
(Cimitile 1998), Canfora 1998). However, lots of
COTS MS-Windows software applications are
seldom decomposable and even non-decomposable.
Therefore, we prefer to wrap an entire MS-Windows
software application through the simulation of a
sequence of I/O operations. By this way, we need to
write the new application logic as the job control
program to call the wrapped application, and new
user interfaces.

Sneed (Sneed 1998) had experiment on
encapsulating the legacy system in five levels: job,
transaction, program, module, and procedure.
Similar to job and transaction level, our software
wrapping is not to alert the source. But there are still
little differences from Sneed’s method. Sneed’s job
wrapper is a job control program. Compare with
Sneed’s wrapper in job level, our component
wrapper is the glue between MS-Windows
application and component interface. Sneed’s
transaction wrapper is applied on database system
only, but our component wrapper is applied on MS-

Windows applications with I/O simulation rather
than limited to database systems.

3 JDSI ARCHITECTURAL STYLE

UserInterface

view

TaskCoordination

UI
Controller

<<event-driven>>
call service

<<system>>
Coordinator

<<Interface>>
port

JWin object

I/O adaptor

MS-Windows
application

<<Java RMI>>
uses

Component wrapper

Figure 1: Structure of JDSI style

The structure of JDSI is shown in Fig.1. JDSI
contains three main architectural components,
Component Wrapper, Coordinator, and UI
Controller. These components will accomplish the
responsibility for three phases in JDSI respectively.
• Encapsulation phase. Lots of MS-Windows

software products do not provide a programmable
interface. A component wrapper has capability to
provide a set of I/O interception/redirection
functions to access a MS-Windows application
(Lin 2004). The component wrapper also is used
to encapsulate the wrapped COTS MS-Windows
applications into Java objects.

• Gluing phase. JDSI style specifies a coordinator
which actually plays the application logic that
abstracts the functionality of this new software
system. Coordinator is also a Java program
controlling and interoperating with server-side
MS-Windows software applications.

Interfacing phase. This integrated software system
may commonly need a convenient operational user
interface to the users. JDSI style adopts the concept
of Model-View-Controller (MVC) model in
designing user-machine interactive function.

3.1 Phase 1: Encapsulation Phase

The designated component wrapper defined in JDSI
style (see Figure 2) has two participants to deal with
encapsulation:
• I/O adapter. It supports I/O interception and

redirection technique to transform a MS-
Windows application’s into a programmable
component.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

450

• JWin. This is an adaptee Java class that abstracts
the functionality of the wrapped MS-Windows
application. To deal with Java object
encapsulation, JWin has a set of methods exposed
on the interface and each method can invoke the
corresponding procedures of I/O adapter.

Figure 2: Structure of component wrapper

3.1.1 I/O Interception and Redirection

Figure 3: I/O interception and redirection

An MS-Windows application shown in Figure 3
could be regarded as a software component which
has two ports including System Message Queue and
Clipboard Space. Three important APIs provided in
Microsoft SDK, keybd_event(), SetClipboardData(),
and GetClipboardData(), are the procedures for
other program’s invocation.
 For input interception/redirection, there exists a
system message queue to store external events such
as keyboard and mouse events. Once the keyboard is
clicked on a window, this window becomes active
and receives the program focus. A thread will
receive event messages in system message queue
only as this thread receives focus. The API,
keybd_event(), provided by MS-Platform SDK can
send keyboard events to an active MS-Windows
software application. If the inputs are not device
events, Microsoft supports clipboard mechanism
used to intercept input data. Another API in MS-
SDK, SetClipboardData(), can be used to
intercept/redirect input data from I/O adapter.
 For output redirection, the MS-Windows
Clipboard mechanism is also applied. First, the I/O
adapter triggers the wrapped COTS MS-Windows
application to save the output data in the clipboard
space. Then the I/O adapter acquires the output data

from the clipboard space through the API,
GetClipboardData().

3.1.2 Java Object Encapsulation

<<application>>
COTS

MS-Windows
APP

<<DLL>>
I/O adapter.dll

<<I/O redirection>>

Keybd_event(ScanCode, Ch,
KEVENTF_EXTENDEDKEY,0)
SetClipboardData()
GetClipboardData()

<<interface>>
Ports

Startup()
Key()
Hotkey()
inputString()

<interface>>
ports

<<client>>
Java program JWin Interface JWin adaptee

I/O adapter

MS-Windows application

Component wrapper

Figure 4: Collaboration of Java and I/O adapter in object
encapsulation

JWin is an adaptee class which exposes the existing
interface to abstract the wrapped MS-Windows
software application. A set of methods on this
interface would serve the functionality of the MS-
Windows application.

In the encapsulation phase, the I/O adapter is
firstly programmed in Microsoft Visual C++
language with MS-SDK APIs and formed into the
Dynamic Linking Library (.dll) file format. This I/O
adapter.dll provides procedures like startup(), key(),
hotkey(), inputString() and so on as the imports.
These import procedures would call the
keybd_event(), SetClipboardData(), and
GetClipboardData() to access the COTS MS-
Windows application. Then JWin uses its Java
methods to call the procedures provided in I/O
adapter.dll as shown in the Figure 4 After these step,
a COTS MS-Windows application seems to be
wrapped and encapsulated in Java class.
 Language incompatibility is however a problem
in this step. Fortunately, Java provides JNI (Native
Invocation) technique to invoke methods written in
other programming languages, like C++.

3.2 Phase 2: Gluing Phase

To assemble the server-side wrapped MS-Windows
applications, JDSI style defines a coordinator which
has two responsibilities to deal with the integration.
First, the designated coordinator is used to
interoperate individual MS-Windows applications in
performing user requests. Second, coordinator
provides a user-interactive system for client users’
manipulation.
 The coordinator defined by JDSI is illustrated in
Figure 5. Coordinator has two counterparts:
TaskCoordination and UserInterface.
 TaskCoordination is a Java class which abstracts
the new integrated software system.
TaskCoordination is also an application logic which
exposes software services designed by the software

Ja
Ja

va_Method1()
va_Method2()

 .
 .
 .

JWin

<<Java Native Invocation>>

COTS
MS-Windows APP

System message
queue clipboard

Keybd_event() SetClipboardData()

I/O Adapter

GetClipboardData()

Input redirection Output redirection

<<port>> <<port>>

<<procedure call>>

<<procedure call>>
<<procedure call>>

JDSI: A SOFTWARE INTEGRATION STYLE FOR INTEGRATING MS-WINDOWS SOFTWARE APPLICATIONS IN
A JAVA-BASED DISTRIBUTED SYSTEM

451

integrator for client-side users, but these services are
implemented by remotely calling the JWin’s
methods in the server-side.

Figure 5: Structure of coordinator

3.3 Phase 3: Interfacing

Figure 6: MVC pattern in JDSI

A new integrated software system may commonly
need a operational interface such as GUI for client-
side users. Due to the old user interface of the
wrapped MS-Windows application is hardly
separated. We prefer to build a new one for client
users rather than reusing the old one.
 JDSI style includes a Model-View-Controller
(MVC) pattern into coordinator. UserInterface in
coordinator provides user interface (i.e.
OPI_Windows in Figure 5) for end-user’s operation
through UI_Controllers, such as monitor, mouse,
keyboard, and other I/O devices. Each operation
would call the services of TaskCoordination to
request the sever-side MS-Windows applications.
 According to MVC pattern, the UserInterface
could be regarded as an abstract UI_Factory (see
Figure 6), which declares an interface for operations
that create concrete OPI-Windows for users.
 The TaskCoordination in coordinator could be
regarded as the “Model” component in MVC,
because it implements the functionality of the
integrated system. However, TaskCoordination is
not a concrete Model, because each of services in
coordinator is operated by remotely calling the
server-side wrapped MS-Windows software
applications.

4 CONCLUSION

JDSI style specifies a software wrapper for wrapping
MS-Windows applications as Java objects. JDSI
style could be applied to COTS-based system
development and even for legacy system
reengineering. The valuable design knowledge could
help a software engineer to deal with the related
problems when reusing COTS-based systems and
legacy systems. Our current work is focused on how
to promote the performance and robustness in JDSI
style.

Coordinator

UserInterface TaskCoordination JWin

<<Interface>>
port

Method_1()
Method_2()

.

.

.
Method_n()

Service()

Remote Method
Invocation

OPI_Window

getData()
Input()
Call_service()
Display()

<<client>>
I_Controller

getData

Service() {
 Method_1()
 Method_2()
 .
 .
 Method_n()
}

<<method invocation>>
Call service

manipulate

REFERENCES

Aversano, L., Canfora, G., Cimitile A., De Lucia, A.,
2001. Migrating Legacy Systems to the Web: An
Experience Report. Proceedings of the 5th European
Conference on Software Maintenance and
Reengineering, 148 –157.

Canfora, G., Cimitile, A., De Lucia, A., Di Lucca, G.A.,
1998. Decomposing Legacy Programs: A First Step
towards Migrating to Client-Server Platforms.
Proceedings of the 6th International Workshop on
Program Comprehension, 136 –144.

Cimitile, A., De Carlini, U., De Lucia, A., 1998.
Incremental Migration Strategies: Data Flow Analysis
for Wrapping. Proceedings of the 5th IEEE Working
Conference on Reverse Engineering, 59 –68.

De Lucia, A., Di Lucca, G.A., Fasolino, A.R., Guerra, P.,
Petruzzelli, S., 1997. Migrating Legacy Systems
towards Object-Oriented Platforms. Proceedings of
IEEE International Conference on Software
Maintenance, 122 –129.

Lin, J.M., et. al., "Reengineering Windows Software
Applications Into Reusable CORBA Objects”, Journal
of Information Software and Technology, Vol.46, No.6,
pp. 403-413, May 2004.

Schmidt, D., Stal, M., Rohnert, H., Buschmann, F., 1999.
Pattern-Oriented Software Architecture: Volume 2.
Reading, MA: Addison-Wesley.

Serrano, M., Carver, D., Montes De Oca, C., 2002.
Reengineering Legacy Systems for Distributed
Environments. Journal of Systems and Software, 37-55.

Sneed, H.M., 1998. A Case Study in Software Wrapping.
Proceedings of the International Conference on
Software Maintenance, (1998), 86-94.

U

UI_Factory

<<ConcreteView_A>>
OPI-Window for userA

<<ConcreteView_B>>
OPI-Window for userB

<<AbstractModel>>
Task coordination

Service()

<<ConcreteModel>>
Wrapped MS-Windows

APP

<<Controller>>
userA

Controller>>
userA

manipulation

manipulation

Call service

Call service

Get data

Get data

<<

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

452

